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Abstract

Following a problem posed by Lovász in 1969, it is believed that every connected
vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic
Cayley graphs arising from groups having a (2, s, 3)-presentation, that is, for groups
G = 〈a, b|a2 = 1, bs = 1, (ab)3 = 1, etc.〉 generated by an involution a and an element
b of order s ≥ 3 such that their product ab has order 3. More precisely, it is shown
that the Cayley graph X = Cay(G, {a, b, b−1}) has a Hamilton cycle when |G| (and
thus s) is congruent to 2 modulo 4, and has a long cycle missing only two vertices
(and thus necessarily a Hamilton path) when |G| is congruent to 0 modulo 4.

1 Introductory remarks

In 1969, Lovász [21] asked whether every connected vertex-transitive graph has a
Hamilton path, thus tying together, through this special case of the Traveling Sales-
man Problem, two seemingly unrelated concepts: traversability and symmetry of graphs.
Lovász problem is, somewhat misleadingly, usually referred to as the Lovász conjecture,
presumably in view of the fact that, after all these years, a connected vertex-transitive
graph without a Hamilton path is yet to be produced. Moreover, only four connected
vertex-transitive graphs (having at least three vertices) not possessing a Hamilton cycle
are known to exist: the Petersen graph, the Coxeter graph, and the two graphs obtained
from them by replacing each vertex with a triangle. All of these are cubic graphs, suggest-
ing perhaps that no attempt to resolve the above problem can bypass a thorough analysis
of cubic vertex-transitive graphs. Besides, none of these four graphs is a Cayley graph.
This has led to a folklore conjecture that every Cayley graph is hamiltonian.

This problem has spurred quite a bit of interest in the mathematical community. In
spite of a large number of articles directly and indirectly related to this subject (see
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 17, 19, 18, 24, 25, 26, 27, 28, 29, 30, 35, 36, 37] for some
of the relevant references), not much progress has been made with regards to either of the
two conjectures.

For example, most of the results proved thus far in the case of Cayley graphs depend on
various restrictions made either on the class of groups dealt with or on the generating sets
of Cayley graphs. For example, one may easily see that Cayley graphs of abelian groups
have a Hamilton cycle. Also, following a series of articles [17, 24, 27] it is now known that
every Cayley graph of a group with a cyclic commutator subgroup of prime power order, is
hamiltonian. This result has later been generalized to connected vertex-transitive graphs
whose automorphism group contain a transitive subgroup whose commutator subgroup
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is cyclic of prime-power order, with the Petersen graph being the only counterexample
[16]. And finally, perhaps the biggest achievement on the subject is a result of Witte (now
Morris) which says that a Cayley (di)graph of any p-group has a Hamilton cycle [37]. (For
further results not explicitly mentioned or referred to here see the survey paper [15].)

In this article we consider the hamiltonicity problem for cubic Cayley graphs arising
from groups having a (2, s, 3)-presentation, that is, for groups G = 〈a, b|a2 = 1, bs =
1, (ab)3 = 1, etc.〉 generated by an involution a and an element b of order s ≥ 3 such that
their product ab has order 3. More precisely, the following is the main result of this article.

Theorem 1.1 Let s ≥ 3 be an integer and let G = 〈a, b|a2 = 1, bs = 1, (ab)3 = 1, etc.〉 be
a group with a (2, s, 3)-presentation. Then the Cayley graph X = Cay(G, {a, b, b−1}) has
a Hamilton cycle when |G| (and thus also s) is congruent to 2 modulo 4, and has a cycle
of length |G|−2, and thus necessarily a Hamilton path, when |G| is congruent to 0 modulo
4.

Let us comment that the class of groups considered in Theorem 1.1 is by no means
restrictive. First, by [23], [22], [33] and [38] every finite nonabelian simple group except
the Suzuki groups, a thin family of PSpn(q) and a thin family of PSUn(q) groups, M11,
M22, M23, McL and at most finitely many other non-sporadic finite simple groups have
a (2, s, 3)-presentation. Also, methods similar to those in this article have been used in
[12, 13] to find Hamilton cycles in certain Cayley graphs. And second, if X is a cubic arc-
transitive graph and G ≤ AutX acts 1-regularly on X, then it is easily seen that G has
a (2, s, 3)-presentation for some s. Namely, the ordered pair (X,G) gives rise to a unique
orbit of those undirected cycles in X which have the property that each of these cycles is
rotated by some automorphism in G (that is, the so called consistent cycles in the termi-
nology of Biggs [11]). These cycles give rise to the faces of the corresponding (orientably)
regular map associated with X, and their length is then precisely our parameter s in the
(2, s, 3)-presentation of G. Going backwards, the well defined correspondence between
these groups (or rather their Cayley graphs) and the class of all those cubic arc-transitive
graphs which admit a subgroup acting regularly on the arcs is, geometrically, best seen
via the concept of the hexagon graphs, explained in the subsequent section. (However,
this correspondence is not 1-1, for a cubic arc-transitive graph may possess nonisomorphic
1-regular subgroups.)

The article is organized as follows. In Section 2 we describe our method for con-
structing Hamilton cycles and paths in cubic Cayley graphs of groups having a (2, s, 3)-
presentation by analyzing six examples of such graphs. They are associated with, re-
spectively, the groups Z6 and S3 × Z3 with a (2, 6, 3)-presentation, the group S4 with a
(2, 4, 3)-presentation, the group Q8 o S3 with a (2, 8, 3)-presentation, the group A4 with
a (2, 3, 3)-presentation and the group A5 having a (2, 5, 3)-presentation. In Section 3 we
introduce the graph-theoretic concepts of cyclic stability and cyclic connectivity. In partic-
ular, we discuss an old theorem of Payan and Sakarovitch [32] which gives the exact size of
a maximum cyclically stable set in a cyclically 4-connected cubic graph (Proposition 3.2),
a result that proves to be of crucial importance for the purpose of this article. Using
a result of Nedela and Škoviera [31] on the cyclic connectivity in cubic vertex-transitive
graphs (Proposition 3.3), together with an analysis of cubic arc-transitive graphs of girth
at most 5 (Proposition 3.4), we then obtain a slight refinement of the above mentioned
result of Payan and Sakarovitch (Proposition 3.5), thus laying the groundwork for the
proof of Theorem 1.1 which is carried out in Section 4.
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2 The method of proof illustrated

In this section we give examples illustrating our method of proof of Theorem 1.1. In
particular, each Cayley graph we study has a canonical Cayley map given by an embedding
of the Cayley graph X = Cay(G, {a, b, b−1}) of the (2,s,3)-presentation of a group G =
〈a, b|a2 = 1, bs = 1, (ab)3 = 1, etc.〉 in the closed orientable surface of genus 1 + (s −
6)|G|/12s with faces |G|/s disjoint s-gons and |G|/3 hexagons. This map is given by using
the same rotation of the b, a, b−1 edges at every vertex and results in one s-gon and
two hexagons adjacent to each vertex. In each case we give a tree of either (|G| − 2)/4
hexagons if |G| ≡ 2(mod 4) and (|G| − 4)/4 hexagons if |G| ≡ 0(mod 4). This tree of
hexagons necessarily contains, respectively, all or all but two of the vertices of the Cayley
graph and as a subspace of the Cayley map is a topological disk. The boundary of this
topological disk is a (simple) cycle passing through, respectively, all or all but two vertices
of the Cayley graph. We give two examples in the case |G| ≡ 2(mod 4) and four examples
in the case |G| ≡ 0(mod 4). In each example we show the tree of hexagons in the Cayley
map, in the first case giving rise to a Hamilton cycle of the graph and in the second case
giving rise to a long cycle missing only two vertices. Finally we do show a Hamilton cycle
in the Cayley graph in the case |G| ≡ 0(mod 4) when the tree of (|G|−4)/4 hexagons does
not give a Hamilton cycle in the Cayley graph. We do this by exhibiting a Hamilton tree
of faces in the Cayley map (a tree of faces such that each vertex of the Cayley graph lies
in the boundary of at least one of these faces) by using an appropriate number of s-gons.
In Examples 2.1 and 2.2 we have |G| ≡ 2(mod 4) and s ≡ 2(mod 4), in Examples 2.3 and
2.4 we have |G| ≡ 0(mod 4) and s ≡ 0(mod 4), and in Examples 2.5 and 2.6 we have
s ≡ 1(mod 2) and thus |G| ≡ 0(mod 4).

Note that the above construction has a direct translation into a more graph-theoretic
language by associating with the Cayley graph X = Cay(G, {a, b, b−1}) of G the so called
hexagon graph Hex(X) whose vertex set consists of all the hexagons in X arising from
the relation (ab)3, with two hexagons adjacent in Hex(X) if they share an edge in X.
It may be easily seen that Hex(X) is nothing but the so called orbital graph of the left
action of G on the set H of left cosets of the subgroup H = 〈ab〉, arising from the suborbit
{aH, abaH, ababaH} of length 3. (But note that aH = bH and so abaH = ab2H and
ababaH = b−1H.) More precisely, the graph has vertex set H, with adjacency defined
as follows: an arbitrary coset xH is adjacent to precisely the three cosets xbH, xb−1H
and xab2H. Clearly, G acts 1-regularly on Hex(X). Conversely, let X be a cubic arc-
transitive graph Y admitting a 1-regular action of a subgroup G of AutY . Let v ∈ V (Y )
and let h be a generator of H = Gv

∼= Z3. Then there must exist an element a ∈ G
such that G = 〈a, h〉 and such that Y is isomorphic to the orbital graph of G relative
to the suborbit {aH, haH, h2aH}. Moreover, a short computation shows that a may be
chosen to be an involution, and letting b = ah we get the desired presentation for G.
There is therefore a well defined correspondence between these two classes of objects, as
noted in the introductory section. However, this correspondence is not 1-1, for a cubic arc-
transitive graph may possess nonisomorphic 1-regular subgroups. A typical example is the
Moebius-Kantor graph on 16 vertices which admits two noisomorphic 1-regular subgroups,
one with a (2, 8, 3)-presentation and the other with a (2, 12, 3)-presentation. The former
and the corresponding Cayley graph is discussed in Example 2.4 below.

The trees of hexagonal faces in the associated Cayley map of X (mentioned in the first
paragraph) then correspond to vertex subsets inHex inducing trees with the property that
the complement in V (X) is either an independent set when |G| ≡ 2 (mod 4), or induces a
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subgraph with a single edge when |G| ≡ 0 (mod 4). That this approach works in general
will follow from the results given in Section 3.

Example 2.1 In the middle picture of Figure 1 we show a trivial tree of hexagons (con-
sisting of a single hexagon), whose boundary is a Hamilton cycle in the toroidal Cayley
map of X = K3,3, the Cayley graph of the group G = Z6 with a (2, 6, 3)-presentation
〈a, b | a2 = b6 = (ab)3 = 1, etc.〉, where a = 3 and b = 1. The left picture shows the cor-
responding hexagon graph Θ2, and the right picture shows the corresponding Hamilton
cycle in X.

Figure 1: A (trivial) Hamilton tree of faces in a toroidal Cayley map of of K3,3 giving rise
to a Hamilton cycle, and the associated hexagon graph.

Example 2.2 In the middle picture of Figure 2 we show a Hamilton tree of hexagons,
whose boundary is a Hamilton cycle in the toroidal Cayley map of the Pappus graph X,
a Cayley graph of the group G = S3 × Z3 with a (2, 6, 3)-presentation 〈a, b | a2 = b6 =
(ab)3 = 1, etc.〉, where a = ((12), 0) and b = ((13), 1). The left picture shows this same tree
in the corresponding hexagon graph K3,3, and the right picture shows the corresponding
Hamilton cycle in X.

Figure 2: A Hamilton tree of faces in a toroidal Cayley map of the Pappus graph giving
rise to a Hamilton cycle, and the associated hexagon graph.
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Example 2.3 In the middle picture of Figure 3 we show a tree of hexagons, whose bound-
ary is a cycle missing only two vertices in the spherical Cayley map of a Cayley graph X of
the group G = S4 with a (2, 4, 3)-presentation 〈a, b | a2 = b4 = (ab)3 = 1〉, where a = (12)
and b = (1234). The left picture shows this same tree in the corresponding hexagon graph
Q3, the cube, and the right picture shows a modified tree of faces, including also a square,
whose boundary is a Hamilton cycle in this map.

Figure 3: A tree of faces in the spherical Cayley map of a Cayley graph of S4 giving rise
to a cycle missing two vertices, the associated hexagon graph, and a modified Hamilton
tree of faces.

Example 2.4 In the middle picture of Figure 4 we give the genus 2 Cayley map of a
Cayley graph X of the group G = Q8 o S3 with a (2, 8, 3)-presentation 〈a, b | a2 = b8 =
(ab)3 = 1, etc.〉, where a = (1, (23)) and b = (i, (12)). The action of the transposition
(12) ∈ S3 on Q8 is given by the rule: (12)i = −j, (12)j = −i, (12)k = −k, and the
rules of action of the other two transpositions are then obvious. In particular, (123)i =
(23)(12)i = j, and similarly (123)j = k, and (123)k = i. It is then easily checked that a
is an involution, that b has order 8 and ab has order 3. Note that this map is given by
identifying antipodal octagons as numbered (and the associated adjacency of hexagons).
Note also that the sixth octagon is omitted from this picture, but occurs as the outer edges
of the outer hexagons. We show a tree of hexagons in this map, whose boundary is a cycle
missing only two vertices. The left picture shows this same tree in the corresponding
hexagon graph, the Moebius-Kantor graph of order 16, and the right picture shows a
Hamilton tree of faces, including also an octagon, whose boundary is a Hamilton cycle in
this map.
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Figure 4: A tree of faces in the genus 2 Cayley map of a Cayley graph of Q8oS3 giving rise
to a cycle missing two vertices, the associated hexagon graph, and a modified Hamilton
tree of faces.

Example 2.5 In the middle picture of Figure 5 we show a tree of hexagons, whose bound-
ary is a cycle missing only two vertices in the spherical Cayley map of a Cayley graph
X of the group G = A4 with a (2, 3, 3)-presentation 〈a, b | a2 = b3 = (ab)3 = 1〉, where
a = (12)(34) and b = (123). The left picture shows this same tree in the corresponding
hexagon graph K4, and the right picture shows a Hamilton tree of faces, including also
two triangles, whose boundary is a Hamilton cycle in this map.

Figure 5: A tree of faces in the spherical Cayley map of a Cayley graph of A4 giving rise
to a cycle missing two vertices, the associated hexagon graph, and a modified Hamilton
tree of faces.

Example 2.6 In the middle picture of Figure 6 we show a tree of hexagons, whose bound-
ary is a cycle missing only two vertices in the spherical Cayley map of a Cayley graph
X of the group G = A5 with a (2, 5, 3)-presentation 〈a, b | a2 = b5 = (ab)3 = 1〉, where
a = (12)(34) and b = (12345). The left picture shows this same tree in the corresponding
hexagon graph, the dodecahedron, and the right picture shows a Hamilton tree of faces,
including also two pentagons, whose boundary is a Hamilton cycle in this map.
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Figure 6: A tree of faces in the spherical Cayley map of a Cayley graph of A5 giving rise
to a cycle missing two vertices, the associated hexagon graph, and a modified Hamilton
tree of faces.

3 Cyclic stability and cyclic connectivity

A successful application of the method described in the previous section depends heav-
ily on two purely graph-theoretic results. The first one, due to Payan and Sakarovitch
[32], goes back to 1975 and deals with maximum sizes of vertex subsets in cubic graphs
inducing acyclic subgraphs, whereas the second one, due to Nedela and Škoviera [31], is
somewhat more recent and concerns cyclic connectivity of vertex-transitive graphs.

Following [32], a paper that is presumably not readily available, we say that, given a
graph (or more generally a loopless multigraph) X, a subset S of V (X) is cyclically stable
if the induced subgraph X[S] is acyclic (a forest). The size |S| of a maximum cyclically
stable subset S of V (X) is said to be the cyclic stability number of X. The following result
giving an upper bound on the cyclic stability number is due to Jaeger [20]. For the sake
of completeness we include its proof.

Proposition 3.1 [Jaeger, 1974] Let X be a cubic loopless multigraph of order n and let
S be a maximum cyclically stable subset of V (X). Then

|S| = (3n− 2c− 2e)/4, (1)

where c is the number of connected components (trees) in X[S] and e is the number of
edges in X[V (X) \ S]. In particular, |S| ≤ (3n− 2)/4.

Proof. Let V = V (X). First, in view of maximality of S we have that a vertex in V \ S
has at most one neighbor in V \ S, so that each of the e edges in X[V \ S] is an isolated
edge. Now let f and g denote, respectively, the number of edges in X[S] and the number
of edges with one endvertex in S and the other in V \ S. Then we have that f = |S| − c
and g = |S| + 2c. Of course, e + f + g = 3n/2 and so e + 2|S| + c = 3n/2, giving us the
desired expression for |S|. Now clearly, the maximum value for |S| occurs when e = 0,
that is when V \ S is an independent set of vertices, and when at the same time c = 1,
that is when X[S] is a tree.

In order to explain the result of Payan and Sakarovitch, we need to introduce the
concept of cyclic connectivity. Let X be a connected graph. A subset F ⊆ E(X) of
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edges of X is said to be cycle-separating if X − F is disconnected and at least two of its
components contain cycles. We say thatX is cyclically k-connected, in short c.k.c., if no set
of fewer than k edges is cycle-separating in X. Furthermore, the edge cyclic connectivity
ζ(X) of X is the largest integer k not exceeding the Betti number |E(X)| − |V (X)|+1 of
X for which X is cyclically k-edge connected. (This distinction is indeed necessary as, for
example the theta graph Θ2, K4 and K3,3 possess no cycle-separating sets of edges and
are thus cyclically k-edge connected for all k, however their edge cyclic connectivities are
2, 3 and 4, respectively.)

In [32, Théorème 5], Payan and Sakarovitch proved that in a cubic cyclically 4-
connected graph the above upper bound for its cyclic stability number given in Proposi-
tion 3.1 is always attained. More precisely, bearing in mind the expression for the cyclic
stability number given in (1), the following result may be deduced from [32, Theoreme 5].

Proposition 3.2 [Payan, Sakarovitch, 1975] Let X be a cyclically 4-connected cubic graph
of order n, and let S be a maximum cyclically stable subset of V (X). Then |S| = [(3n −
2)/2] and more precisely, the following hold.

(i) If n ≡ 2 (mod 4) then |S| = (3n − 2)/4, and X[S] is a tree and V (X) \ S is an
independent set of vertices;

(ii) If n ≡ 0 (mod 4) then |S| = (3n − 4)/4, and either X[S] is a tree and V (X) \ S
induces a graph with a single edge, or X[S] has two components and V (X) \S is an
independent set of vertices.

The connection between cyclic stability and hamiltonicity is now becoming more trans-
parent. Let G be a group with a (2, s, 3)-presentation, X be the corresponding Cayley
graph and Y = Hex(X) be its hexagon graph . As described in the previous section it is
precisely the fact that one is able to decompose the vertex set V (Y ) into two subsets, the
first one inducing a tree, and its complement being an independent set of vertices that en-
abled us to produce a Hamilton cycle in the original graph X for the 2, 6, 3)-presentations
of Z6 and S3 × Z3. Further, with a slight modification, when the decomposition is such
that the first set induces a tree and its complement induces a subgraph with a single
edge, then a long cycle missing only two vertices is produced in X. Therefore if |G|, and
hence the order of the hexagon graph Hex(X), is congruent to 2 modulo 4, then part (i)
of Proposition 3.2 does the trick, provided of course that the Hex(X) is indeed a c.4.c.
graph. On the other hand, if the |G|, and hence the order of Hex(X), is divisible by 4,
then we are not quite there yet for only one of the possibilities given in part (ii) of Proposi-
tion 3.2 will allow us to construct a long cycle in the original graph X. In what follows we
explore this situation by, first, bringing into the picture an important result on cyclic edge
connectivity of cubic graphs due to Nedela and Škoviera, and second, by showing that,
save for a few exceptions, a cyclically stable set in a hexagon graph of order divisible by
4, may always be chosen in such a way that it induces a tree, and its complement induces
a subgraph with a single edge.

The following result is proved in [31, Theorem 17].

Proposition 3.3 [Nedela, Škoviera, 1995] The cyclic edge connectivity ζ(X) of a cubic
vertex-transitive graph X equals its girth g(X).

Consequently, the cyclic edge connectivity of the hexagon graph, which is an arc-
transitive, and thus also a vertex-transitive cubic graph, coincides with its girth. As it will
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soon become clear, a lower bound on the girth is needed. This is what the next proposition
does, where we show that, with a few exceptions, the girth of such a graph is not less than
6.

Proposition 3.4 Let X be a cubic arc-transitive graph. Then one of the following occurs.

(i) The girth g(X) of X is at least 6; or

(ii) X is one of the following graphs: the theta graph Θ2, K4, K3,3, the cube Q3, the
Petersen graph GP (5, 2) or the dodecahedron graph GP (10, 2).

Proof. Clearly, Θ2 is the only arc-transitive cubic (multi)graph of girth 2.
Let G = AutX. Suppose first that g(X) = 3. Let v ∈ V (X) and let u0, u1 and u2

be its neighbors. By arc-transitivity there exists an automorphism α of X fixing v and
cyclically permuting its neighbors, that is, α(ui) = ui+1, i ∈ Z3. Since g(X) = 3 it clearly
follows that each ui is adjacent to the other two neighbors of v, and so X ∼= K4.

Suppose next that g(X) = 4. Let v ∈ V (X), N(v) = {ui|i ∈ Z3} and α ∈ Gv have
the same meaning as above. Since g(X) = 4, there are no edges in N(v), but there must
exist, say, a vertex x01, which is adjacent to both u0 and u1. If x01 is also a neighbor
of u2, then it is easily seen that there exists a third common neighbor of u0, u1 and u2,
implying that X ∼= K3,3. If on the other hand, x01 is not adjacent to u2, then there must
exist vertices x12 and x20 which are common neighbors of, respectively, u1 and u2, and of
u2 and u0. But then, using the fact that X is an arc-transitive graph of girth 4, one can
easily show that the three vertices x01, x12 and x20 have a common neighbor, forcing X
to be the cube Q3.

Finally, suppose that g(X) = 5. We show first that the order of G is divisible by 5.
Let v ∈ V (X), let N(v) = {ui|i ∈ Z3} be its neighbors’ set. We may assume that the 2-arc
u0vu1 is contained on a 5-cycle. By arc-transitivity the arc vu2 must also be contained
on a 5-cycle, and so either the 2-arc u0vu2 or the 2-arc u1vu2 is contained on a 5-cycle.
But then both 2-arcs are on a 5-cycle. In short, an edge of X is contained on at least two
distinct 5-cycles. On the other hand, an edge of X cannot be contained on more than four
5-cycles. Namely, since g(X) = 5, a 3-arc of X is contained on at most one 5-cycle, and
so a 2-arc of X is contained on at most two 5-cycles, and a 1-arc on at most four 5-cycles.
More precisely, either each 3-arc in X gives rise to a unique 5-cycle or each 2-arc gives
rise to a unique 5-cycle. In the first case there is a total of 6n/5 cycles of length 5 in X
(with each edge on four 5-cycles), and in the second case there is a total of 3n/5 cycles of
length 5 in X (with each edge on two 5-cycles), where n is the order of X. In both cases
we have that 5 divides n. In particular, X has an automorphism of order 5.

Next we show that the stabilizer of the action of G on the set C of all 5-cycles in X
contains an element of order 5. In other words, we show that there is an automorphism
of X which rotates a 5-cycle in X (and so in the terminology of [11], X has a consistent
5-cycle).

In view of the above remarks on the numbers of 5-cycles an edge of X is contained
on, we can easily see that either G is transitive on C or G has two equal length orbits,
say C1 and C2 in its action on C. But note that |C| is either 3n/5 or 6n/5 and moreover
|G| = 3 · 2rn, by the classical result of Tutte [34] (where r ≤ 2, as G is at most 3-arc-
transitive). Let P be a Sylow 5-subgroup of G, say of order 5k. It follows that there must
be an orbit in the action of P on C (or C1 and C2) of length 5t · m, where (5,m) = 1
and t < k. This implies that there is a stabilizer in the action of G on C (or C1 and C2)
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containing an element of P . In other words, there is an automorphism of X rotating a
5-cycle. This will prove crucial in the final steps of our proof.

Now let ρ be this automorphism of order 5 in X rotating a 5-cycle C = v0v1v2v3v4

of X. Clearly, since X is cubic the action of ρ on V (X) is semiregular. Let ui, i ∈ Z5,
respectively, be the additional neighbors of vi, i ∈ Z5 so that ρ(ui) = ui+1 for all i ∈ Z5.
Supposing first that U = {ui|i ∈ Z5} induces a cycle, one may easily deduce that X
is isomorphic to the Petersen graph GP (5, 2). We may therefore assume that U is an
independent set of vertices. Now if the additional neighbors of ui, i ∈ Z5, were in two
orbits of ρ, then no edge viui would be contained on a 5-cycle. Hence there is a third orbit
W = {wi|i ∈ Z5} of ρ, with ρ(wi) = wi+1 for all i ∈ Z5, containing all of the additional
neighbors of vertices in U . Of course, W is an independent set of vertices, and there is a
fourth orbit Q = {qi|i ∈ Z5} of ρ containing the additional neighbors of vertices in W .

But now in order for the edges with one endvertex in W and the other endvertex in
Q to lie on a 5-cycle, the orbit Q must necessarily induce a cycle. In other words, ρ has
precisely four orbits and so X is a non-bipartite cubic arc-transitive graph of order 20.
Hence X is isomorphic to the graph of the dodecahedron, that is the graph GP (10, 2) in
the generalized Petersen graph notation.

Using the previous two results we will give a refinement to Payan and Sakarovitch
result in Proposition 3.2 by showing that for cubic arc-transitive graphs of girth 6 the
maximum cyclically stable subset may always be chosen to induce a tree.

Proposition 3.5 Let X be a cubic arc-transitive graph of order n ≡ 0 (mod 4), not iso-
morphic to any of the following graphs: K4, the cube Q3, or the dodecahedron graph
GP (10, 2). Then there exists a cyclically stable subset S of V (X) which induces a tree,
and such that V (X) \ S induces a graph with a single edge.

Proof. Observe that, in view of Proposition 3.4, the girth of X is at least 6, and hence,
in view of Proposition 3.3, X is a c.6.c. graph. Note also that the statement of this
proposition really says that in part (ii) of Proposition 3.2, a particular one of the two
possibilities may be chosen.

We procceed as follows. Let us first modify our graph X by deleting a pair of adjacent
vertices, say u and v. This modified graph Y = X − {u, v} has n − 2 vertices with the
two neighbors u1 and u2 of u and the two neighbors v1 and v2 of v having valency 2, and
all the remaining vertices having valency 3. “Forgetting” the four vertices u1, u2, v1 and
v2, we may therefore also think of this modified graph as being cubic of order n− 6. The
important thing however is that Y must be a c.4.c. graph. Namely, taking two vertex
disjoint cycles C1 and C2 in Y , a maximum number of additional paths separating these
two cycles one can obtain by adding the vertices u and v (and all their neighbors), is 2.
This would occur if each of the two vertices u and v had one of their two (additional)
neighbors in C1 and the other in C2. We conclude that by going from Y back to the
original graph X, the cyclic connectivity can go up by at most 2. Since X is c.6.c it
follows that Y is c.4.c.

But the order of Y is congruent to 2 modulo 4 and by part (i) of Proposition 3.2 (in this
particular instance we are forgetting the four neighbors to make Y cubic!!), there exists a
maximum cyclically stable subset R of V (Y ) inducing a tree and such that its complement
V (Y ) \ R is an independent set of vertices. Now the maximum cyclically stable subset
S of V (X) is now obtained by taking S = R ∪ {u1, u2, v1, v2}. (The edge uv is thus the
single edge of the graph induced on the complement V (X) \ S.)
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4 Proving Theorem 1.1

Proof of Theorem 1.1. Suppose first that |G| ≡ 2 (mod 4). As demonstrated in
Section 2 a tree in Hex(X) whose complement is an independent set of vertices gives rise
to a Hamilton tree of faces in the Cayley map associated with X and thus to a Hamilton
cycle in X. In view of Example 2.1, which takes care of the case Hex(X) ∼= Θ2, and
Propositions 3.2, 3.3 and 3.4 which combined together take care of the case Hex(X) 6∼= Θ2,
the graph X is then clearly hamiltonian. As for the case when |G| ≡ 0 (mod 4), we use
Examples 2.5, 2.3 and 2.6 for the case when Hex(X) is isomorphic, respectively, to one of
K4, Q3 or GP (10, 2) and Proposition 3.5 for the case when Hex(X) 6∼= K4, Q3, GP (10, 2),
to ensure the existence in the hexagon graph Hex(X) of a a tree whose vertex complement
(in Hex(X)) is a graph with a single edge. This tree then translates in X into a tree of
faces in the Cayley map (associated with X) whose boundary misses only two vertices.
Namely, those two adjacent vertices in X with the corresponding edge being shared by the
two hexagons which (in Hex(X)) are the endvertices of the single edge in the complement
of the three chosen above. Consequently, X contains a long cycle missing only two vertices.
In particular, X has a Hamilton path in this case. This completes the proof of Theorem 1.1.
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