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Abstract

For any Coxeter group W , we define a filtration of H∗(W ;ZW ) by
W -submodules and then compute the associated graded terms. More
generally, if U is a CW complex on which W acts as a reflection group we
compute the associated graded terms for H∗(U) and, in the case where
the action is proper and cocompact, for H∗

c (U).
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1 Introduction

The cohomology of a group G with coefficients in a left G-module M is denoted
H∗(G;M). We are primarily interested in the case where M is the group ring,
ZG. Since ZG is a G-bimodule, H∗(G;ZG) inherits the structure of a right G-
module. WhenG is discrete and acts properly and cocompactly on a contractible
CW complex Ω, there is a natural topological interpretation for this cohomology
group: H∗(G;ZG) ∼= H∗

c (Ω). where H∗
c ( ) denotes finitely supported cellular

cohomology. The action of G on Ω induces a right action on cohomology and the
above isomorphism is one of right G-modules. For a general group G, not much
is known about the G-module structure on H∗(G;ZG). For example, even in
the above case where G acts properly and cocompactly on a contractible Ω, we
don’t believe it is known whether or not H∗(G;ZG) is always finitely generated
as a G-module.

Here we deal with the case where G = W , a Coxeter group. In [5] the first
author computed H∗(W ;ZW ) as an abelian group but not as a W -module. We
partially remedy the situation here. We do not quite determine the W -module
structure on H∗(W ;ZW ). Rather, we describe a certain decreasing filtration of

∗The first author was partially supported by NSF grant DMS 0405825.
†The second author was partially supported by KBN grant 2 PO3A 017 25.
‡The third author also was partially supported by NSF grant DMS 0405825.
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H∗(W ;ZW ) by W -submodules and compute the associated graded terms. In
order to describe this computation, we need some notation.

Suppose (W,S) is a Coxeter system. (W is the group and S is the distin-
guished set of involutions which generates W .) A subset T ⊂ S is spherical
if the subgroup WT , generated by T , is finite. S denotes the set of spherical
subsets of S, partially ordered by inclusion.

Let A := ZW denote the group ring. Let {ew}w∈W be its standard basis.
For each T ∈ S, put

aT :=
∑
u∈WT

eu.

Let AT denote the right ideal aTA. If T ⊂ U ∈ S, then aU ∈ AT (cf., formula
(3.2) in Section 3); hence, AU ⊂ AT . Let A>T be the right W -submodule
spanned by the AU , with U ) T .

For each w ∈ W , put In′(w) := {s ∈ S | l(sw) < l(w)}. It is a fact that
In′(w) ∈ S. Set b′w := aIn′(w)ew. We will show in Lemma 3.1 that {b′w}w∈W
is also a basis for A. Define ÂT to be the Z-submodule of A spanned by
{b′w | w ∈ W, In′(w) = T}. N.B. ÂT is not a W -submodule of A; however,
ÂT ⊂ AT and, as we shall see in Corollary 3.3, the natural map ÂT → AT /A>T

is an isomorphism of free abelian groups.
The Coxeter group W acts properly and cocompactly as a group generated

by reflections on a certain contractible complex Σ (see [3]). A fundamental
domain for the W -action on Σ is a finite simplicial complex K, which can be
described as follows: K is the geometric realization of the poset S. Since ∅
is an initial element of S, K is contractible. For each s ∈ S, define Ks to be
the geometric realization of S≥{s}, where S≥{s} := {T ∈ S | s ∈ T}. It is a
subcomplex of K. For each U ⊂ S, put KU :=

⋃
s∈U Ks. The calculation of [5]

was the following:

H∗(W ;A) = H∗
c (Σ) =

∑
T∈S

H∗(K,KS−T )⊗ ÂT .

There is a decreasing filtration of right W -submodules of A:

F0 ⊃ · · ·Fp ⊃ · · · ,

where Fp is the submodule of A spanned by the AT with Card(T ) ≥ p. This
induces a filtration of H∗(W ;A). The main result in this paper is the following.
(A more precise version of which is stated as Theorem 4.5, below.)

Theorem. In filtration degree p, the graded right W -module associated to the
above filtration of H∗(W ;A) is isomorphic to⊕

T∈S
Card(T )=p

H∗(K,KS−T )⊗ (AT /A>T ),

where AT /A>T is the right W -module defined above.
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Corollary. H∗(W ;A) is finitely generated as a W -module.

In view of [5, 6, 10, 12, 13], the above computation was a natural guess for
the W -module structure on H∗(W ;A) = H∗

c (Σ). In particular, in [6] we calcu-
lated the “weighted L2-cohomology” of Σ and obtained a very similar answer
(provided the “weight” q lies in a certain range).

We actually proceed in somewhat more generality than indicated above.
We consider an action of W as a reflection group on a CW complex U with
strict fundamental domain X and then compute certain equivariant homol-
ogy and cohomology groups of U with coefficients in ZW . The equivariant
(co)homology groups we are interested in have the following well known interpre-
tations: HW

∗ (U ;ZW ) = H∗(U) and when the action is proper and cocompact,
H∗
W (U ;ZW ) = H∗

c (U). In Theorems 3.5 and 4.5 we prove formulas similar to
the ones above for H∗

c (U) and H∗(U). In both cases the formulas involve terms
of the form H∗(X,XU ) or H∗(X,XU ) with U ⊂ S. The difference is that in
homology only the spherical subsets U ∈ S appear, while in cohomology only
cospherical U appear (i.e., S − U ∈ S). In the case of homology we recover the
results of [4].

In the last two sections we make some comments concerning Hecke algebras
and the finitely supported cellular cohomology of a building Φ associated to a
BN pair. In Section 6 we point out that the results of the previous sections
hold when the group ring is replaced by the Hecke algebra Aq associated to
(W,S) and a multiparameter q. In Section 7 we state the natural conjecture
(Conjecture 7.4) for the computation of H∗

c (Φ) and we prove the cochain version
of it as Theorem 7.2.

2 Preliminaries

Invariants and coinvariants. Given a left W -module M and a subset T ⊂ S,
we have the Z-submodule MT ⊂M of the WT -invariants defined by

MT := MWT := {x ∈M | wx = x for all w ∈WT }. (2.1)

More generally, for any Z-submodule B ⊂M , put

BT := B ∩MT .

For a right W -module M , the WT -coinvariants are defined as a quotient
Z-module of M :

MT := MWT
:= M ⊗WT

Z ∼= M/MIT , (2.2)

where IT is the augmentation ideal of ZWT and Z is the trivial WT -module.
For any Z-submodule B ⊂M , BT denotes the image of B in MT .

Z(W/WT ) denotes the (left) permutation module defined by the W -action
on W/WT .

Lemma 2.1. There are isomorphisms:
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(i) HomW (Z(W/WT ),M) ∼= MT ,

(ii) M ⊗W Z(W/WT ) ∼= MT ,

where M is a left W -module in the first case and a right W -module in the second.

Proof. (i) HomW (Z(W/WT ),M) can be identified with the set of W -equivariant
functions f : W/WT →M . Because of equivariance, for any such f , f(1WT ) ∈
MT . Conversely, given any x0 ∈ MT , the formula f(wWT ) = wx0, gives a
well-defined f : W/WT → M . So, f → f(1WT ) defines an isomorphism from
HomW (Z(W/WT ),M) to MT .

(ii) We have:

M ⊗W Z(W/WT ) = M ⊗W ZW ⊗WT
Z = M ⊗WT

Z = MT .

Remark 2.2. If M is a bimodule, then the right W -action on M gives both
HomW (Z(W/WT ),M) and MT the structure of right W -modules and the iso-
morphism in (i) is an isomorphism of right W -modules. Similarly, (ii) is an
isomorphism of left W -modules.

The basic construction. Suppose X is a CW complex. Let P(X) denote the
set of cells in X and X(i) the set of i-cells. Given cells c ∈ X(i) and c′ ∈ X(i−1),
let [c : c′] denote the incidence number. Write c′ < c whenever the incidence
number [c : c′] is nonzero. Extend this to a partial order on P(X).

A mirror structure on a CW complex X is a family of subcomplexes (Xs)s∈S
indexed by some set S (which for us will always be the fundamental set of
generators for the Coxeter group W ). For each T ⊂ S, define subcomplexes of
X:

XT :=
⋂
s∈T

Xs and XT :=
⋃
s∈T

Xs

and set X∅ := X. For each cell c in X, set

S(c) := {s ∈ S | c ⊂ Xs}.

Similarly, for each x ∈ X, S(x) := {s ∈ S | x ∈ Xs}.
From the above data we construct another CW complex U(W,X), with a cel-

lular W -action, as follows. Give W the discrete topology. Define an equivalence
relation ∼ on W ×X by (w, x) ∼ (w′, x′) ⇐⇒ x = x′ and wWS(x) = w′WS(x′).
U(W,X) is the quotient space (W × X)/ ∼ . The W -action on it is the ob-
vious one. X is a fundamental domain for this action in the strict sense: the
natural inclusion X ↪→ U(W,X), which takes x to the class of (1, x), induces a
homeomorphism X → U(W,Z)/W .

When X is the complex K, discussed in the Introduction, U(W,K) is the
contractible complex Σ.

Coefficient systems. A system of coefficients on a CW complex X is a functor
F from P(X) to the category of abelian groups. Here the poset P(X) is regarded
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as a category with HomP(X)(c, d) equal to a singleton whenever c ≤ d and
empty otherwise. The functor F will be contravariant whenever we are dealing
with chains, homology or coinvariants and covariant in the case of cochains,
cohomology or invariants. Define chains and cochains with coefficients in F by

Ci(X;F) :=
⊕
c∈X(i)

F(c) and Ci(X;F) :=
∏

c∈X(i)

F(c).

We regard both i-chains and i-cochains as functions f from X(i) to
⋃
F(c) such

that f(c) ∈ F(c) for each c ∈ X(i). Boundary and coboundary maps are then
defined by the usual formulas:

∂(f)(c) :=
∑

[d : c]Fdc(f(d))

δ(f)(c) :=
∑

[c : d]Fdc(f(d)),

where, given an i-cell c, the first sum is over all (i+1)-cells d which are incident
to c and the second sum is over all (i − 1)-cells d which are incident to c and
where Fdc : f(d) → f(c) is the homomorphism corresponding to d > c (in the
first case) or c > d (in the second).

Examples 2.3. Suppose {Xs}s∈S is a mirror structure on X.
(i) (Invariants). Given a left W -module M , define a (covariant) system of

coefficients I(M) on X by

I(M)(c) := MS(c).

If B ⊂ M is any Z-submodule of M , then we have a sub-coefficient system
I(B) ⊂ I(M), defined by I(B)(c) := BS(c).

(ii) (Coinvariants). For a right W -module M , define a (contravariant) sys-
tem of coefficients C(M) on X by

C(M)(c) := MS(c).

Similarly, for any Z-submodule B of M , C(B)(c) := BS(c).

The following observation is the key to our results. Suppose M is a left
W -module and that we have a direct sum decomposition (of Z-modules), M =
B ⊕ C, satisfying the following condition:

MT = BT ⊕ CT for all T ⊂ S. (2.3)

Then we have a direct sum decomposition of coefficient systems: I(M) =
I(B)⊕I(C). This leads to a decomposition of cochain groups: Ci(X; I(M)) =
Ci(X; I(B))⊕ Ci(X; I(C) and a decomposition in cohomology:

H∗(X; I(M)) = H∗(X; I(B))⊕H∗(X; I(C)). (2.4)

Similarly, suppose M is a right W -module and M = B ⊕ C is a Z-module
decomposition satisfying:

MT = BT ⊕ CT for all T ⊂ S.
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Then we get a decomposition of coefficient systems: C(M) = C(B)⊕ C(C) and
a corresponding decomposition of homology groups:

H∗(X; C(M)) = H∗(X; C(B))⊕H∗(X; C(C)). (2.5)

Equivariant (co)homology. Given a discrete group G acting cellularly on a
CW complex Ω, we will associate a certain equivariant homology and cohomol-
ogy groups. Given a left G-module M , the G-equivariant cochains on Ω with
coefficients in M are defined by

CiG(Ω;M) := HomG(Ci(Ω),M).

Similarly, if M is a right G-module, we have the G-equivariant chains:

CGi (Ω;M) := M ⊗W Ci(Ω),

where Ci(Ω) denotes the group of cellular i-chains on Ω. (Some people think that
“equivariant (co)homology” refers to the (co)homology of Ω ×G EG with local
coefficients in M . However, there are other equivariant theories, for example,
the one described above.)

If the G-action is free and the projection to the orbit space is a covering
projection, then equivariant (co)chains on Ω are equal to the (co)chains on the
orbit space with local coefficients in M . This is a useful viewpoint even when the
action is not free. In general, M does not induce a locally constant coefficient
system on the orbit space. Rather, it induces a coefficient system on the orbit
space thought of as an “orbihedron” or “complex of groups.” The theory of such
coefficient systems can be found in [11]. These general coefficient systems on
orbihedra are more general then the type considered above. (They correspond to
“lax functors” rather than to functors.) However, as we shall see in Lemma 2.6,
when Ω = U(W,X), the induced coefficient system on X coincides with one of
the coefficient systems described in Examples 2.3.

In the case of coefficients in the group ring, we have the following well-known
interpretation of equivariant (co)homology.

Proposition 2.4. Suppose G acts cellularly on a CW complex Ω. Then

(i) CG∗ (Ω;ZG) ∼= C∗(Ω).

(ii) If the G-action is proper and there are only finitely many orbits of cells,
then

C∗
G(Ω;ZG) ∼= C∗

c (Ω).

Proof. (i) CGi (Ω;ZG) = ZG⊗ZG Ci(Ω) ∼= Ci(Ω).
(ii) For any G-module M , by [2, Lemma 7.4, p.208], HomG(M,ZG) ∼=

Homc(M,Z), where Homc(M,Z) denotes the set of Z-module maps f : M → Z
such that for each m ∈ M , f(gm) = 0 for all but finitely many g ∈ G. Hence,
CiG(Ω;ZG) = HomG(Ci(Ω),ZG) = Homc(Ci(Ω),Z) = Cic(Ω).
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Now let U = U(W,X). W acts properly on U with compact quotient if and
only if X is compact and XU = ∅ whenever U /∈ S. In view of Proposition 2.4,
when dealing with the cohomology of U , we shall always assume that these con-
ditions hold (i.e., X is compact and XU = ∅ for all U /∈ S). However, in the
formulas for the homology of U , we need no extra assumptions on X. In this
special case Ω = U , Proposition 2.4 becomes the following.

Corollary 2.5.

(i) CW∗ (U ;ZW ) ∼= C∗(U).

(ii) C∗
W (U ;ZW ) ∼= C∗

c (U).

Lemma 2.6.

(i) For any right W -module M , CW∗ (U ;M) ∼= C∗(X; C(M)).

(ii) For any left W -module M , C∗
W (U ;M) ∼= C∗(X; I(M)).

Proof. Any orbit of cells in U has the form Wc for some unique cell c in X. As
a W -set, this orbit is isomorphic to W/WS(c). Hence, using Lemma 2.1, we get

CiW (U ;M) ∼=
⊕
c∈X(i)

MS(c) = Ci(X; I(M))

CWi (U ;M) ∼=
⊕
c∈X(i)

MS(c) = Ci(X; C(M)).

Remark 2.7. Combining the isomorphisms in Corollary 2.5 (ii) and Lemma 2.6 (ii),
we get

Cic(U) ∼= CiW (U ;ZW ) ∼= Ci(X; I(ZW )) ∼=
⊕
c∈X(i)

(ZW )S(c).

The composition of these gives an isomorphism Cic(U) →
⊕

c∈X(i)(ZW )S(c),
such that its component corresponding to c ∈ X(i) is given by

f →
∑
w∈W

f(w−1c)ew

where (ew) is the standard basis for ZW . Similarly, the composition of the
isomorphisms in Corollary 2.5 (i) and Lemma 2.6 (i) gives the obvious identifi-
cation

Ci(U) ∼=
⊕
c∈X(i)

(ZW )S(c).
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3 Group ring coefficients

Subsets of W . For any U ⊂ S, put

XU := {w ∈W | l(sw) > l(w) for all s ∈ U}
YU := {w ∈W | l(ws) > l(w) for all s ∈ U} = (XU )−1

XU (resp., YU ) is the set of elements in W which are (U, ∅)-reduced (resp.,
(∅, U)-reduced). XU (resp., YU ) is a set of representatives for WU\W (resp.,
W/WU ).

Given w ∈W , set

In(w) := {s ∈ S | l(ws) < l(w)},
In′(w) := {s ∈ S | l(sw) < l(w)} = In(w−1)

In(w) (resp., In′(w)) is the set of letters of S with which a reduced word for w
can end (resp., begin). By [3, Lemma 7.12], for any w ∈W , In(w) is a spherical
subset. We note that, for any T ∈ S,

wTXT = {w ∈W | T ⊂ In′(w)},
YS−T = {w ∈W | T ⊃ In(w)},

where wT ∈ WT is the element of longest length. Thus, wTXT is also a set of
representatives for WT \W .

Symmetrization and alternation. From now on, A denotes the group ring
ZW . For each spherical subset T of S, define elements aT and hT in A by

aT :=
∑
w∈WT

ew and hT :=
∑
w∈WT

(−1)l(w)ew (3.1)

called, respectively, symmetrization and alternation with respect to T . If T ⊂
U ∈ S, define

c(U,T ) :=
∑

u∈XT∩WU

eu and d(U,T ) :=
∑

u∈YT∩WU

(−1)l(w)eu.

It is easily checked that

aU = aT c(U,T ) and hU = d(U,T )hT . (3.2)

For any subset T of S, let AT denote the WT -invariants in A, defined as
in (2.1). Notice that AT is 0 if T /∈ S and is equal to the right ideal aTA if
T ∈ S. Similarly, for T ∈ S, define HT to be the left ideal AhT and to be 0
otherwise. By (3.2), AU ⊂ AT and HU ⊂ HT whenever T ⊂ U . Let AT denote
the WT -coinvariants, defined as in (2.2) and let IT denote the augmentation
ideal of ZWT . For any s ∈ S, note that AI{s} = H{s}. Hence, A{s} = A/H{s}.
More generally, for any T ⊂ S,

AIT =
∑
s∈T

H{s} so, AT = A/
∑
s∈T

H{s}.
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Two bases for A. For each w ∈W , define elements b′w, bw ∈ A by

b′w := aIn′(w)ew and bw := ewhIn(w).

Lemma 3.1. {b′w | w ∈ W} is a basis for A (as a Z-module). More generally,
for any T ∈ S, {b′w | T ⊂ In′(w)} is a basis for AT .

Proof. We first show {b′w | w ∈ W} is a basis. The point is that the matrix
which expresses the b′w in terms of the ew has 1’s on the diagonal and is “upper
triangular with respect to word length.” In detail: first note that b′v is the sum
of ev with various ew having l(w) < l(v). Suppose

∑
βwb

′
w = 0 is a nontrivial

linear relation. Let v ∈ W be an element with βv 6= 0 and l(v) maximum.
Since the coefficient of ev in the linear relation must be 0, we have βv = 0, a
contradiction. Similarly, one shows, by induction on word length, that each ev
is a linear combination of b′w with l(w) ≤ l(v). Hence, {b′w} spans A.

To prove the second sentence, we must first show that b′w ∈ AT whenever
T ⊂ In′(w). If this condition holds, then, by (3.2),

b′w = aIn′(w)ew = aT c(In′(w),T )ew ∈ AT .

Note that T ⊂ In′(w) if and only if w ∈ wTXT . Since, by the previous para-
graph, {b′w | w ∈ wTXT } is linearly independent, it remains to show that it
spans AT . Since wTXT is a set of coset representatives for WT \W , a basis for
AT is {aT ew | w ∈ wTXT }. Let ew := c(In′(w),T )ew. For w ∈ wTXT , the matrix
which expresses {ew | w ∈ wTXT } in terms of {ew | w ∈ wTXT } has 1’s on the
diagonal and is upper triangular with respect to word length. So,

{aT ew | w ∈ wTXT } = {b′w | T ⊂ In′(w)}

is also a basis for AT .

Lemma 3.2. {bw | w ∈ W} is a basis for A. More generally, for any subset
U of S, the projection A→ AS−U maps {bw | U ⊃ In(w)} injectively to a basis
for AS−U .

Proof. The proof of the first sentence is omitted since it is similar to that of the
first sentence of the previous lemma.

Fix a subset U ⊂ S and let p : A → AS−U denote the projection. Since
AS−U = Z(W/WS−U ), {p(ew) | w ∈ YS−U} is the obvious basis for AS−U (as a
Z-module). Any element y ∈ A can be written in the form

y =
∑

w∈YS−U

∑
u∈WS−U

αwuewu. (3.3)

Moreover, y ∈ AIS−U = Ker(p) if and only if
∑
u∈WS−U

αwu = 0 for each
w ∈ YS−U . Let y be an element in the submodule spanned by {bw | U ⊃ In(w)}
(= {bw | w ∈ YS−U}), i.e., let

y =
∑

w∈YS−U

ywbw.
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Suppose p(y) = 0. Let v ∈ YS−U be such that yv 6= 0 and l(v) is maximum
with respect to this property. Since bv is the sum of ev and ±1 times various
ew with l(w) < l(v), the coefficients αvu in (3.3) are 0 for all u 6= 1 in WS−U .
So,

∑
αvu = 0 forces αvu = 0, a contradiction. Thus, {p(bw) | w ∈ YS−U} is

linearly independent in AS−U . The usual argument, using induction on word
length, shows that {p(bw) | w ∈ YS−U} spans AS−U .

In view of Lemmas 3.1 and 3.2, for each T ∈ S, we define Z-submodules of
A:

ÂT := Span{b′w | In
′(w) = T},

ĤT := Span{bw | In(w) = T}

A corollary to Lemma 3.1 is the following.

Corollary 3.3. For any U ∈ S,

AU =
⊕

T∈S≥U

ÂT .

Consequently, given T ∈ S, for any U ⊂ S we have:

(ÂT )U =

{
ÂT , if U ⊂ T ;
0, if U ∩ (S − T ) 6= ∅.

(3.4)

It follows that the direct sum decomposition in Corollary 3.3 satisfies (2.3) and
hence, gives a decomposition of coefficient systems:

I(A) =
⊕
T∈S

I(ÂT ). (3.5)

In terms of the ĤT , the version of this we are interested in is the following:

(ĤT )U ∼=

{
ĤT , if U ⊂ S − T ;
0, if U ∩ T 6= ∅.

(3.6)

In the above formula, by writing (ĤT )U ∼= ĤT , we mean that the projection
A → AU maps ĤT isomorphically onto (ĤT )U . To see that (ĤT )U = 0 when
U ∩ T 6= ∅, note that if s ∈ T ∩ U , then ĤT ⊂ Hs ⊂ AIU .

The ĤT version of Corollary 3.3 is the following.

Corollary 3.4. For any U ⊂ S,

AS−U =
⊕

T∈S≤U

(ĤT )S−U .
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So, the decomposition in Corollary 3.4 gives a decomposition of coefficient
systems:

C(A) =
⊕
T∈S

C(ĤT ). (3.7)

Hence, (2.4) and (2.5) apply to give the following calculation of (co)homology
with group ring coefficients.

Theorem 3.5. Let U = U(W,X).

Hi
c(U) ∼=

⊕
T∈S

Hi(X,XS−T )⊗ ÂT ,

Hi(U) ∼=
⊕
T∈S

Hi(X,XT )⊗ ĤT .

Proof. To prove the first formula, note that by Proposition 2.4 and observation
(2.4),

Cic(U) = Ci(X; I(A)) =
⊕
T∈S

Ci(X; I(ÂT )).

Given a cell c ∈ X(i), by (3.4),

(ÂT )S(c) =

{
0, if c ⊂ XS−T ;
ÂT , otherwise.

Hence,

Ci(X; I(ÂT )) = {f : X(i) → ÂT | f(c) = 0 if c ⊂ XS−T } = Ci(X,XS−T )⊗ÂT .

Combining these formulas and taking cohomology, we get the first formula.
To prove the second formula, note that by Proposition 2.4 and observation

(2.5),
Ci(U) = Ci(X; C(A)) =

⊕
T∈S

Ci(X; C(ĤT )).

Given a cell c ∈ X(i), by (3.6),

(ĤT )S(c)
∼=

{
0, if c ⊂ XT ;
ĤT , otherwise.

Hence,
Ci(X; C(ĤT )) =

⊕
c∈X(i)

c6⊂XT

ĤT ∼= Ci(X,XT )⊗ ĤT .

Taking homology, we get the second formula.

Remark. The first formula in Theorem 3.5 is one of the main results of [5].
(Actually, only a special case is stated in [5]; however, the general result is stated
in [7].) The second formula is the main result of [4].
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4 The W -module structure of H∗
c (U) and H∗(U).

A is a W -bimodule. So, I(A) is a system of right W -modules and H∗(X; I(A))
(= H∗

c (U)) is a right W -module. Similarly, C(A) is a system of left W -modules
and H∗(X; C(A)) (= H∗(U)) is a left W -module.

For each nonnegative integer p, define

Fp :=
∑
|T |≥p

AT , Ep :=
⊕
|T |<p

ÂT , (4.1)

F ′
p :=

∑
|T |≥p

HT , E′
p :=

⊕
|T |<p

ĤT , (4.2)

where |T | := Card(T ). As in Section 2, these give coefficient systemsI(Fp) and
C(F ′

p) on X. Note that Fp is a right W -module and I(Fp) is a coefficient system
of right W -submodules of I(A). Similarly, C(F ′

p)) is a system of left W -modules.
(However, Ep and E′

p only have the structure of Z submodules of A.)

Lemma 4.1. We have decompositions (as Z-modules):

(i) A = Fp ⊕ Ep and this induces a decomposition of coefficient systems,
I(A) = I(Fp) ⊕ I(Ep).

(ii) A = F ′
p ⊕ E′

p and this induces a decomposition of coefficient systems,
C(A) = C(F ′

p)⊕ C(E′
p).

Proof. (i) By the second formula in Corollary 3.3, Fp =
⊕

|T |≥p Â
T ; hence, by

the first formula in the same corollary, A = Fp ⊕Ep. To get the decomposition
of coefficient systems, we must show that AU = (Fp)U ⊕ (Ep)U for all U ⊂ S.
Since AU =

⊕
T⊃U Â

T ,

AU =
⊕
T⊃U
|T |≥p

ÂT ⊕
⊕
T⊃U
|T |<p

ÂT . (4.3)

Denote the first summation in (4.3) by B and the second one by C.

Claim. B = (Fp)U .

Proof of Claim. Obviously, B ⊂ (Fp)U . Let x ∈ (Fp)U . Since x ∈ Fp, we have

x =
∑
|T |≥p

αT ,

where αT ∈ ÂT . Since x ∈ AU ,

x =
∑
T⊃U

βT ,
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where βT ∈ ÂT . But A =
⊕

T⊂S Â
T , so the two decompositions of x coincide.

Therefore, αT = 0 unless T ⊃ U and

x =
∑
T⊃U
|T |≥p

αT ∈ B,

which proves that (Fp)U ⊂ B.

Continuing with the proof of Lemma 4.1, note that a similar argument shows
(Ep)U = C. Hence, AU = (Fp)U ⊕ (Ep)U and (i) is proved.

(ii) As before, by Corollary 3.4, A = F ′
p ⊕ E′

p. To get the decomposition
of coefficient systems, we must show that AS−U = (F ′

p)S−U ⊕ (E′
p)S−U for all

U ⊂ S. Since AS−U =
⊕

T⊂U (ĤT )S−U ,

AS−U =
⊕
T⊂U
|T |≥p

(ĤT )S−U ⊕
⊕
T⊂U
|T |<p

(ĤT )S−U . (4.4)

Denote the first summation in (4.4) by B′ and the second one by C ′. We claim
that (F ′

p)S−U = B′. Obviously, B′ ⊂ (F ′
p)S−U . Any x ∈ Fp can be written in

the form
x =

∑
|T |≥p

γT ,

where γT ∈ ĤT . Since γT ∈ IS−U whenever T ∩ (S − U) 6= ∅, if T 6⊂ U , we
can set γT = 0 without changing the congruence class of x modulo IS−U . So,
putting

y =
∑
T⊂U
|T |≥p

γT ,

we have y ≡ x mod IS−U and y ∈ B′. So, (F ′
p)S−U ⊂ B′. A similar argument

shows (E′
p)S−U = C ′. Hence, AS−U = (F ′

p)S−U⊕(E′
p)S−U and (ii) is proved.

Corollary 4.2.

(i) Fp ↪→ A induces a W -equivariant embedding Hi(X; I(Fp)) ↪→ Hi(X; I(A))
with image a Z-module direct summand.

(ii) F ′
p ↪→ A induces a W -equivariant embedding Hi(X; C(F ′

p)) ↪→ Hi(X; C(A))
with image a Z-module direct summand.

It follows that Fp+1 ↪→ Fp induces an embedding of right W -modules,
H∗(X; I(Fp+1)) ↪→ H∗(X; I(Fp)). This gives an associated graded group of
right W -modules:

H∗(X; I(Fp))/H∗(X; I(Fp+1)).

Similarly, we have an embedding H∗(X; C(F ′
p+1)) ↪→ H∗(X; C(F ′

p)) of left W -
modules and an associated graded group of left W -modules. Our goal in this
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section is to prove Theorem 4.5 below, which gives a complete computation of
these graded W -modules.

For each T ∈ S, put

A>T :=
∑
U⊃T

AU and H>T :=
∑
U⊃T

HU .

AT /A>T is a right W -module and HT /H>T is a left W -module.

Example 4.3. (The sign representation). A∅/A>∅ is isomorphic to Z as an
abelian group. We can take the image b1 of the basis element b1 (= e1) as the
generator. Since asb1 ∈ A>∅, b1 · as = 0 for all s ∈ S. Hence, b1 · s = −b1. It
follows that W acts on A∅/A>∅ via the sign representation:

b1 · w = (−1)l(w)b1.

Example 4.4. (The case of a finite Coxeter group). If W is finite, then for
any T ⊂ S, AT /A>T ⊗Q can be identified with a (right) W -submodule of the
rational group algebra QW . Similarly, HT /H>T ⊗Q is a (left) W -submodule
of QW . L. Solomon proved in [13] that we have direct sum decompositions:

QW =
⊕
T⊂S

AT /A>T ⊗Q,

QW =
⊕
T⊂S

HT /H>T ⊗Q.

Of course, there is no such decomposition over Z. For an arbitrary Coxeter
group W , a similar result for L2

q(W ) (the “q-weighted L2-completion” of the
regular representation) is proved in [6, Theorem 9.11].

Theorem 4.5. For each nonnegative integer p,

(i) there is an isomorphism of right W -modules:

H∗(X; I(Fp))/H∗(X; I(Fp+1)) ∼=
⊕
|T |=p

H∗(X,XS−T )⊗ (AT /A>T ).

(ii) there is an isomorphism of left W -modules:

H∗(X; C(F ′
p))/H∗(X; C(F ′

p+1)) ∼=
⊕
|T |=p

H∗(X,XT )⊗ (HT /H>T ).

In view of Corollary 2.5 and Lemma 2.6, this theorem gives a computation of
the W -modules associated to the corresponding filtrations of H∗

c (U) and H∗(U).
To prove the theorem we first need the following lemma.

Lemma 4.6. There are isomorphisms of W -modules:

ψ : Fp/Fp+1

∼=−→
⊕
|T |=p

AT /A>T and ψ′ : F ′
p/F

′
p+1

∼=−→
⊕
|T |=p

HT /H>T .
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Proof. The inclusion AT ↪→ Fp induces a map AT → Fp/Fp+1 and A>T is in
the kernel; so, we get AT /A>T → Fp/Fp+1. Therefore, we have a map of right
W -modules:

φ :
⊕
|T |=p

AT /A>T → Fp/Fp+1.

By Corollary 3.3, the inclusion ÂT ↪→ AT induces an isomorphism (of Z-
modules), ÂT → AT /A>T . Also, Fp =

⊕
|T |=p Â

T ⊕ Fp+1. So, we have a
commutative diagram (of maps of Z-modules):⊕

|T |=pA
T /A>T

φ−→ Fp/Fp+1

↖ ↗⊕
|T |=p Â

T

Since the two slanted arrows are bijections, so is φ. Therefore, φ is an isomor-
phism of right W -modules. Put ψ := φ−1.

The definition of the second isomorphism ψ′ is similar.

Here is some more notation. For any T ⊂ S, put

Q〈T 〉 = AT /A>T , Q′
〈T 〉 = HT /H>T .

Since the right W -module Q〈T 〉 is neither a left W -module or even a Z-
submodule of a left W -module, the definition of its (left) WU -invariants as in
(2.1) cannot be applied directly. Similarly, the definition of (right) coinvariants
from (2.2) does not apply directly to Q′

〈T 〉. Nevertheless, for each U ⊂ S, define:

(Q〈T 〉)U := (AT ∩AU )/(A>T ∩AU ),

(Q′
〈T 〉)U := (HT )U/(H>T )U .

These give coefficient systems of W -modules on X defined by

I(Q〈T 〉)(c) := (Q〈T 〉)S(c),

C(Q′
〈T 〉)(c) := (Q′

〈T 〉)S(c),

respectively. As in (3.4) and (3.6),

(Q〈T 〉)U =

{
AT /A>T , if U ⊂ T ;
0, otherwise

(4.5)

(Q′
〈T 〉)U =

{
HT /H>T , if U ⊂ S − T ;
0, otherwise.

(4.6)

Lemma 4.7.

(i) Hi(X; I(Q〈T 〉)) = Hi(X,XS−T )⊗Q〈T 〉.
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(ii) Hi(X; C(Q′
〈T 〉)) = Hi(X,XT )⊗Q′

〈T 〉.

Proof. (i) Using (4.5), we have

Ci(X; I(Q〈T 〉)) = {f : X(i) → Q〈T 〉 | f(c) = 0 if c ⊂ XS−T }
= Ci(X,XS−T ;Q〈T 〉)
∼= Ci(X,XS−T )⊗Q〈T 〉.

(ii) Using (4.6),

Ci(X; C(Q′
〈T 〉)) =

⊕
c∈X(i)

(Q′
〈T 〉)S(c)

=

{
Q′
〈T 〉, if c 6⊂ XT ;

0, if c ⊂ XT ;

= Ci(X,XT )⊗Q′
〈T 〉.

Lemma 4.8. For any U ⊂ S,

(i) the following sequence of right W -modules is exact,

0−→(Fp+1)U−→(Fp)U
ψ̃−→

⊕
|T |=p

(Q〈T 〉)U−→ 0,

where ψ̃ is the map induced by ψ and

(ii) the following sequence of left W -modules is exact,

0−→(F ′
p+1)S−U−→(F ′

p)S−U
ψ̃′−→

⊕
|T |=p

(Q′
〈T 〉)S−U−→ 0,

where ψ̃′ is the map induced by ψ′.

Proof. In the proof of Lemma 4.1, in formula (4.3), we showed

(Fp)U =
⊕
|T |≥p
T⊃U

ÂT .

Put
B :=

⊕
|T |=p
T⊃U

ÂT ,

ThenB is a Z-submodule of (Fp)U and it maps isomorphically onto (Fp)U/(Fp+1)U .
The image of B under ψ is⊕

|T |=p
T⊃U

AT /A>T =
⊕
|T |=p
T⊃U

Q〈T 〉.

This proves (i).
The proof that the sequence in (ii) is short exact is similar.
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Proof of Theorem 4.5. (i) By Lemma 4.8 (i), we have a short exact sequence of
coefficient systems on X:

0−→I(Fp+1)−→I(Fp)−→
⊕
|T |=p

I(Q〈T 〉)−→ 0

inducing a short exact sequence of cochain complexes:

0−→C∗(X; I(Fp+1))−→C∗(X; I(Fp))−→
⊕
|T |=p

C∗(X; I(Q〈T 〉))−→ 0.

By the argument for Corollary 4.2, H∗(X; I(Fp+1)) → H∗(X; I(Fp)) is an
injection onto a (Z-module) direct summand. Hence, the long exact sequence
in cohomology decomposes into short exact sequences and we have:

Hi(X; I(Fp))/Hi(X; I(Fp+1)) ∼=
⊕
|T |=p

Hi(X; I(Q〈T 〉))

∼=
⊕
|T |=p

Hi(X,XS−T )⊗ (AT /A>T ),

where the second isomorphism comes from Lemma 4.7 (i).
(ii) The proof of (ii) is similar.

Remark 4.9. The decreasing filtration ⊃ Fp ⊃ Fp+1 · · · of (4.1) gives a de-
creasing filtration of cochain complexes

· · · ⊃ C∗(X; I(Fp)) ⊃ C∗(X; I(Fp+1)) · · · .

So, the quotient cochain complexes have the form C∗(X; I(Fp)/I(Fp+1)). Tak-
ing homology, we get a spectral sequence with E1-term:

Epq1 := Hp+q(X; I(Fp)/I(Fp+1)).

It converges to

Epq∞ :=
Hp+q(X; I(Fp))

Im(Hp+q(X; I(Fp+1)))
. (4.7)

So, the import of Theorem 4.5 is that Epq1 = Epq∞ .

5 H∗(W ;ZW )

Let K denote the geometric realization of the poset S of spherical subsets. (The
simplicial complex K is contractible because it is a cone; the cone point corre-
sponds to the minimum element ∅ ∈ S.) For each s ∈ S, define a subcomplex
Ks ⊂ K as the geometric realization of S≥{s}. Put Σ := U(W,K). (Alterna-
tively, Σ could be described as the geometric realization of the poset WS of all
“spherical cosets,” i.e., the poset of all cosets of the form wWT , with w ∈ W
and T ∈ S.)
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By construction W acts properly on Σ. It is proved in [3] that Σ is con-
tractible. Hence,

H∗(W ;ZW ) = H∗
c (Σ).

As before, A := ZW . The filtration A = F0 ⊃ · · ·Fp ⊃ · · · gives H∗
c (Σ) =

H∗(K; I(A)) the structure of a graded W -module. As in (4.7), let Epq∞ be the
rightW -module in filtration degree p associated to the grading ofHp+q(K; I(A)).
Theorem 4.5 then has the following corollary.

Theorem 5.1. The associated graded group of Hp+q(W ;ZW ) is given, as a
right W -module, by

Epq∞ =
⊕
|T |=p

Hp+q(K,KS−T )⊗ (AT /A>T ).

It follows from Theorem 3.5 that we have a direct sum decomposition of
Z-modules:

H∗
c (Σ) ∼=

⊕
T∈S

H∗(K,KS−T )⊗ ÂT .

In view of Theorem 5.1, it is natural to conjecture that H∗
c (Σ) decomposes as

above into a direct sum of right W -modules. However, in general, there is no
such decomposition, as we can see by considering the following example.

Example 5.2. Suppose W is the free product of 3 copies of Z/2. Then K is the
cone on 3 points. So, it has 3 edges. By Theorem 4.5, H1(K,KS)⊗A/A>∅ is a
quotient of H1

c (Σ). Let x ∈ C1(K) be a cochain (= cocycle) which evaluates to
1 on one of the edges, call it c, and to 0 on the other two edges. Choose s ∈ S
which is not a vertex of c. Let y denote the image of x⊗1 inH1(K,KS)⊗A/A>∅.
By Example 4.3, A/A>∅ has rank 1 as an abelian group and the W -action on it
is given by the sign representation. Hence, y · s = −y in H1(K,KS)⊗ A/A>∅.
Suppose we had a W -equivariant splitting ϕ : H1(K,KS) ⊗ A/A>∅ → H1

c (Σ).
When regarded as an element of C1

c (Σ), x+x ·s represents ϕ(y+y ·s) in H1
c (Σ),

i.e., it represents 0. But x and −x · s are not cohomologous cocycles in C1
c (Σ).

(One can see this by noting that there is a line (= infinite 1-cycle) on which x
evaluates to 1 and x · s to 0.) Hence, there can be no such splitting ϕ.

6 Hecke algebra coefficients

In this section and the next we work over the rational numbers Q rather than
Z.

Let i : S → I be a function to some index set I such that i(s) = i(s′)
whenever s and s′ are conjugate in W . Let q = (qi)i∈I be a fixed I-tuple of
rational numbers. Write qs instead of qi(s). If s1 · · · sl is a reduced expression
for an element w ∈ W , then the number qs1 · · · qsl

is independent of the choice
of reduced expression. We write it as qw. The Hecke algebra Aq of W is a
deformation of the group algebra QW which is equal to QW when each qs = 1.
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As a a rational vector space, it has the same basis {ew}w∈W as does QW .
Multiplication is determined by the rules:

ewew′ = eww′ , if l(ww′) = l(w) + l(w′)

e2s = (qs − 1)es + qs.

Given a special subgroup WT , Aq(WT ) denotes the Hecke algebra of WT . It
is a subalgebra of Aq. There are ring homomorphisms α : Aq(WT ) → Q and
β : Aq(WT ) → Q, defined by α(ew) := qw and β(ew) := (−1)l(w), respectively.
Given a left Aq-module M and a subset T of S, put

MT := {x ∈M | ax = α(a)x for all a ∈ Aq(WT )}.

This gives a coefficient system I(M) on X the same way as in Examples 2.3.
As in [6], for each T ∈ S, we modify the formulas in (3.1) to define elements

aT and hT in Aq by

aT :=
1

WT (q)

∑
w∈WT

ew and hT :=
1

WT (q−1)

∑
w∈WT

(−1)l(w)q−1
w ew

where
WT (q) :=

∑
w∈WT

qw, and WT (q−1) :=
∑
w∈WT

q−1
w .

Put ATq := aTAq, HT
q := AqhT . (If T /∈ S, put ATq := 0, HT

q := 0.)
For each subset U of S, put

(Aq)U := Aq ⊗Aq(WU ) Q = Aq/AqIU ,

where Aq(WU ) acts on Q via the symmetric character αU and IU :=
∑
s∈U H

s
q

is the augmentation ideal of Aq(WU ). AUq is a right Aq-module and (Aq)U is a
left Aq-module.

We have decreasing filtrations (Fp) and (F ′
p) of Aq, defined exactly as in

(4.1) and (4.2).
If X and U are as before, then the proof of Theorem 4.5 gives the following.

Theorem 6.1. With notation as above, for each nonnegative integer p,

(i) there is an isomorphism of right Aq-modules:

H∗(X; I(Fp))/H∗(X; I(Fp+1)) ∼=
⊕
|T |=p

H∗(X,XS−T )⊗ (ATq /A
>T
q ).

(ii) there is an isomorphism of left Aq-modules:

H∗(X; C(F ′
p))/H∗(X; C(F ′

p+1)) ∼=
⊕
|T |=p

H∗(X,XT )⊗ (HT
q /H

>T
q ).
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7 Buildings

The importance of Hecke algebras lies in their relationship to buildings and BN
pairs (e.g., see [1, Exercises 22 and 24, pp. 56–58]). Suppose that (G,B) is a
BN pair. Associated to (G,B) we have a Coxeter system (W,S) such that for
each s ∈ S, there is a subgroup Gs of G which is equal to the double coset BsB
in the Bruhat decomposition. For each subset T of S, put GT :=

⋂
s∈T Gs. The

associated building is the CW complex Φ := (G×K)/ ∼, where the equivalence
relation ∼ is defined as in the definition of U(W,K) in Section 2. The building
has finite thickness if (Gs : B) < ∞ for all s ∈ S. If this is the case, put
qs = (Gs : B) − 1 and regard q = (qs) as an I-tuple, where I is the set of
conjugacy classes of elements in S.

Let F (G/B) denote the Q vector space of finitely supported, Q-valued func-
tions on G/B. The left G-action on G/B gives F (G/B) the structure of a right
G-module. For any T ⊂ S, we have a projection pT : G/B → G/GT . Pulling
back via pT identifies F (G/GT ) with a G-submodule of F (G/B).

Regard F (G/B) as a subset of all Q-valued functions on G. The Hecke
algebra can be identified with the subspace of F (G/B) consisting of those func-
tions which are invariant under the B-action on F (G/B) (induced from the left
B-action on G/B). Under this identification, the basis element ew ∈ Aq is iden-
tified with the characteristic function of the double coset, C(w−1) := Bw−1B
and the idempotent aT with the characteristic function of GT (= BWTB).

Aq acts naturally on the left on F (G/B) by convolution, i.e., given f ∈
F (G/B), a ∈ Aq, convolution is defined by

(a ∗ f)(h) :=
∫
G

a(g−1h)f(g)dg,

where we are integrating with respect to Haar measure normalized so that the
measure of B is 1. In fact, Aq is the intertwining algebra (= the commutant)
of G on F (G/B).

Lemma 7.1. For any T ∈ S,

ATq ⊗Aq F (G/B) = F (G/GT )

Proof. Let
∑
i aTαi ⊗ fi be a typical element of the left-hand side. It can be

rewritten as 1⊗
∑
aT ∗αi ∗fi. The universal map to F (G/B) consists of taking

the second factor. Since aT is the characteristic function of GT , aT ∗αi ∗ fi lies
in F (G/GT ); so, the image of this map is the right-hand side.

Theorem 7.2.

Cic(Φ;Q) = Ci(K; I(Aq))⊗Aq F (G/B).

Proof. This is a direct consequence of Lemma 7.1 since

Cic(Φ;Q) =
⊕
c∈K(i)

F (G/GS(c)).
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The natural conjecture is the following.

Conjecture 7.3.

Hi
c(Φ) = Hi(K; I(Aq))⊗Aq F (G/B).

The filtration (Fp) induces a filtration ofH∗(K; I(Aq)) and hence, ofH∗
c (Φ).

So, Lemma 7.1 leads us to the following.

Conjecture 7.4. In filtration degree p, the associated graded group of H∗
c (Φ)

is given, as a right G-module, by⊕
|T |=p

H∗(K,KS−T )⊗ FT /F>T ,

where FT := F (G/GT ) and F>T denotes the submodule spanned by the FU with
U ) T .
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