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Abstract. It is of obvious interest to know whether an algebraic property of
modules is preserved by direct sums of such modules. In this paper we provide
a survey of this question for various classes of modules of interest. The question
of inheritance of a property by direct sums of modules has been explored for
the classes of (quasi-)injective modules and some of their generalizations as a
motivation for further work. In the main part of this paper we provide latest
results and developments on this question for the related classes of Baer, quasi-
Baer, and Rickart modules. Examples are provided that delimit our results and
explain the notions. Some open problems are listed at the end of the paper.

1. Introduction

For a long time, algebraists have been interested in finding out when do (certain)
properties of modules (or of other algebraic structures) go over to finite or infinite
direct sums of modules (or such structures)? Among other things, this quest has
led one to the conditions needed for the property of (quasi-)injectivity of modules
and some of its generalizations to go to direct sums of such modules. In this survey
paper, starting from the notion of (quasi-)injectivity, we will consider this question
about direct sums for some well-known classes of modules which generalize injective
modules or are related to the notion of injectivity by other means. In particu-
lar, we will also consider this direct sum question for the related classes of Baer,
quasi-Baer, and Rickart modules. While the question of when do the direct sums
of modules with a property P inherit the property P has been satisfactorily settled
for the classes of (quasi-)injective, (quasi-)continuous, and FI-extending modules,
the problem of a satisfactory characterization of when is a direct sum of extend-
ing modules, extending, remains an open problem. There have been a number of
attempts to solve this open problem but with limited success. By an interesting
result of Chatters and Khuri, a ring is right extending right nonsingular if and only
if it is Baer and right cononsingular. This result on rings was extended to a module
theoretic setting by Rizvi and Roman after the introduction of relevant notions for
modules. That development has allowed us to connect the study of the class of ex-
tending modules to that of Baer modules and vice versa, under suitable conditions.
In this paper, we will consider relevant properties of the classes of Baer, quasi-Baer,
and Rickart modules needed in our study. We will discuss conditions needed for a
direct sum of Baer, quasi-Baer, and Rickart modules to be Baer, quasi-Baer, and
Rickart, respectively. A major part of the paper will be devoted to results related to
these latter classes of modules in an attempt to bring the reader up to date on the
latest developments in this newer area of research. It is hoped that some of these
results and other related investigations may lead to a satisfactory answer for the
question of the direct sum problem for the class of extending modules mentioned
earlier. It will also be of interest if a solution to any of the general open problems
listed at the end of the paper can be obtained. As a general observation, we will
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note from the results presented that for a direct sum to inherit a property under
our consideration, one often needs some sort of ‘relative conditions’ between each of
its direct summands. In addition, it will be seen that often for a property P to go
to ‘infinite’ direct sums of modules with P, one may require some kind of finiteness
or additional conditions.

After this introduction, in Section 2 we consider injective modules and some of
their generalizations. Connections between the classes of injective, quasi-injective,
(quasi-)continuous, extending, and FI-extending modules are explored. Explicit
examples are given which show that direct sums of modules belonging to each of
these classes (except for the class of FI-extending modules) do not belong to these
respective classes, in general. Necessary and sufficient conditions and other results
for the direct sum problem are provided.

Our focus in Section 3 is on the related notions of Baer, Quasi-Baer, and Rickart
rings and modules. Connections between extending and Baer properties are men-
tioned for rings via Chatters-Khuri’s result (Theorem 3.1) and for modules via The-
orem 3.4. The basic properties of these notions are discussed and highlighted. It
is shown that in general direct sums of Baer, Quasi-Baer, and Rickart modules do
not inherit each of these properties. This is the main topic of our discussions in the
remainder of this paper.

Section 4 is devoted to results on direct sums of Baer and quasi-Baer modules.
The direct sum problem of Baer modules is quite difficult. It is shown that the direct
sum of Baer modules inherits the Baer property only under special conditions. For
the quasi-Baer module case, it is shown that every free module over a quasi-Baer
ring is quasi-Baer. More generally, any direct sum of copies of a quasi-Baer module
is quasi-Baer.

Section 5 consists of latest developments on the direct sum problem in the theory
of Rickart modules. Relative Rickart and relative C2 condition are introduced to
study the direct sums of Rickart modules. We use these conditions to obtain specific
results for direct sums of Rickart modules to be Rickart.

In Section 6, we consider the question of when are free R-modules Rickart or
Baer. A number of well-known classes of rings R are characterized via Rickart or
Baer properties of certain classes of free R-modules. In particular, a ring R is right
hereditary (resp., right semihereditary) iff every (resp., every finitely generated)
free right R-module is Rickart. A ring R is right hereditary and semiprimary (resp.,
right semihereditary and left Π-coherent) iff every (resp., every finitely generated)
free right R-module is Baer. As a consequence, a new characterization of a Prüfer
domain R is obtained via Rickart (or Baer) property of its finitely generated free
modules. An example of a module M is included showing that M (n) is a Baer
module while M (n+1) is not Baer. It is shown that a ring R is von Neumann regular
iff every finitely generated free R-module is Rickart with C3 condition.

Throughout this paper, R is a ring with unity and M is a unital right R-module.
For a right R-module M , S = EndR(M) denotes the endomorphism ring of M ; thus
M can be viewed as a left S- right R-bimodule. For ϕ ∈ S, Kerϕ and Imϕ stand for
the kernel and the image of ϕ, respectively. The notations N ⊆M , N ≤M , NEM ,
N ≤ess M , or N ≤⊕ M mean that N is a subset, a submodule, a fully invariant
submodule, an essential submodule, or a direct summand of M , respectively. M (n)

denotes the direct sum of n copies of M and Matn(R) denotes an n× n matrix ring
over R. By C, R, Q, Z, and N we denote the set of complex, real, rational, integer,
and natural numbers, respectively. E(M) denotes the injective hull of M and Zn

denotes the Z-module Z/nZ.
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We also denote rM (I) = {m ∈M | Im = 0}, rS(I) = {ϕ ∈ S | Iϕ = 0} for ∅ 6= I ⊆ S;
rR(N) = {r ∈ R |Nr = 0}, lS(N) = {ϕ ∈ S |ϕN = 0} for N ≤M .

2. Injectivity and some of its generalizations

We begin with some basic definitions and examples.

Definition 2.1. Let M and N be right R-modules. M is called N -injective if, ∀
N ′ ≤ N and ∀ ϕ : N ′ → M , ∃ ϕ : N → M such that ϕ|N ′ = ϕ. M is said to be
quasi-injective if M is M -injective. M is called injective if M is N -injective for all
right R-modules N .

It is easy to see that any vector space is an injective module over its base field, and
every semisimple module is always quasi-injective. The following examples motivate
this study about direct sums.

Example 2.2. Let R =
∏

i∈N F be a product of fields F and let Mi = FR. Then
M =

⊕
i∈NMi is semisimple and E(M) =

∏
i∈N F, thus M is a quasi-injective

R-module which is not injective.

Example 2.3. Let R =
( F F

0 F
)

with F a field. Then M =
(

F F
0 0

)
is an injective

R-module and N =
(

0 0
0 F

)
is a quasi-injective R-module. However, M ⊕ N = R is

not a quasi-injective R-module.

Example 2.4. Consider Zp and Zp2 , where p is a prime number. Each of these is
a quasi-injective Z-module. However, Zp ⊕ Zp2 is not a quasi-injective Z-module.

For the stronger notion of injective modules, the finite direct sums inherit the
property.

Theorem 2.5. E =
⊕n

i=1Ei is injective iff each Ei is injective for 1 ≤ i ≤ n.

Next, we introduce some finiteness conditions that will be required for results on
infinite direct sums.

Definition 2.6. Let I be an index set, and {Mα}α∈I be a family of R-modules.
(A1) For every choice of distinct αi ∈ I (i ∈ N) and mi ∈ Mαi , the ascending

sequence (
⋂

i≥n rR(mi))n∈N becomes stationary.
(A2) For every choice of x ∈ Mα (α ∈ I) and mi ∈ Mαi for distinct αi ∈ I

(i ∈ N) such that rR(mi) ≥ rR(x), the ascending sequence (
⋂

i≥n rR(mi))n∈N
becomes stationary.

(A3) For every choice of distinct αi ∈ I (i ∈ N) and mi ∈ Mαi , if the sequence
(rR(mi))i∈N is ascending, then it becomes stationary.

Note that A1 ⇒ A2 ⇒ A3 : Reverse implications do not hold true in general [36].

For the case of a specific infinite direct sum of injective module we need condition
(A1) to get the following:

Proposition 2.7. (Proposition 1.10, [36]) M =
⊕

α∈IMα is injective if and only
if each Mα is injective and (A1) holds where I is an index set.

For an infinite direct sum of quasi-injective modules to be quasi-injective, we also
need the slightly weaker chain condition (A2):

Proposition 2.8. (Proposition 1.18, [36]) The following conditions are equivalent
for a direct sum decomposition of a module M =

⊕
α∈IMα:
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(a) M is quasi-injective;
(b) Mα is quasi-injective and

⊕
β∈I−{α}Mβ is Mα-injective for every α ∈ I;

(c) Mα is Mβ-injective for all α, β ∈ I and (A2) holds.

Corollary 2.9. (Corollary 1.19, [36])
⊕n

i=1Mi is quasi-injective iff Mi is Mj-
injective for all 1 ≤ i, j ≤ n. In particular, M (n) is quasi-injective iff M is quasi-
injective.

In recent years the notions of continuous, quasi-continuous, and extending mod-
ules have garnered a great deal of interest. The remainder of this section is devoted
to the direct sum problem for these classes of modules.

Definition 2.10. Let M be a right R-module. Consider the following conditions:
(C1) Every submodule of M is essential in a direct summand of M .
(C2) If a submodule L of M is isomorphic to a direct summand of M , then L is

a direct summand of M .
(C3) If M1 and M2 are direct summands of M such that M1 ∩ M2 = 0, then

M1 ⊕M2 is a direct summand of M .
A module M is called extending (or CS ) if it satisfies (C1), M is called continuous
if it satisfies (C1) and (C2), and M is called quasi-continuous if it satisfies (C1)
and (C3). A ring R is called right extending or right (quasi -)continuous if RR is
extending or (quasi-)continuous, respectively.

The notion of extending modules was generalized to that of FI-extending modules
in [7].

Definition 2.11. A right R-module M is called FI-extending if every fully invariant
submodule of M is essential in a direct summand of M . (When M = RR, the fully
invariant submodules are precisely the 2-sided ideals of R.) A ring R is right FI-
extending if RR is an FI-extending module, i.e., every ideal of R is essential in a
right ideal direct summand of R.

Large classes of modules and rings are FI-extending, but not necessarily extending
(for example, direct sums of uniform modules, the ring of upper triangular matrices
over Z, etc; see Example 2.13(v) and [7]).

Remark 2.12. The hierarchy of the notions we have considered until now, goes as fol-
lows: Injective ⇒ Quasi-injective ⇒ Continuous ⇒ Quasi-continuous ⇒ Extending
⇒ FI-extending.

Example 2.13. The following examples show that, in general, the reverse implica-
tions in Remark 2.12 are not true.

(i) M =
⊕

i∈N F is a quasi-injective R-module but not an injective R-module
where R =

∏
i∈N F with F a field. More precisely, the injective hull of M is

E(M) =
∏

i∈N F.
(ii) Let R be a ring which has only 3 right ideals but which is not left artinian.

Then M = RR is continuous but not quasi-injective. Since if so, R will be
right self-injective and hence quasi-Frobenius, a contradiction. (See page
337 in [17] for an explicit example.)

(iii) ZZ is quasi-continuous but not continuous (ZZ ∼= nZ, but nZ is not a direct
summand of ZZ).

(iv) Let F be a field and let R =
( F F

0 F
)
. Then RR is an extending module but is

not quasi-continuous.
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(v) The Z-module
⊕∞

i=1 Z is FI-extending but not extending. Further, let R =( Z Z
0 Z

)
. Then RR is FI-extending but not extending.

The module M = RR in Example 2.3 and the module M = Zp ⊕Zp2 in Example
2.4 also exhibit direct sums of (quasi-)continuous modules which are not (quasi-
)continuous. Yet, in each of these cases, the direct sum is extending. In the next two
examples, we present a situation where similar direct sums are not even extending.

Example 2.14. Zp,Zp3 are quasi-injective Z-modules, where p is a prime number;
consequently, each of these modules is quasi-injective hence (quasi-)continuous, and
so extending. However, Zp ⊕ Zp3 is not an extending Z-module.

Example 2.15. Direct sums of extending modules are not extending in general:
(i) Let M =

⊕∞
i=1 Z. Then M is not an extending Z-module, while the domain Z

is uniform and hence extending;
(ii) Let R = Z[X]. Thus R is a commutative Noetherian domain (hence quasi-
continuous), but R⊕R is not an extending R-module.

These examples illustrate that some extra conditions will be required for a di-
rect sum of (quasi-)continuous or extending modules to be (quasi-)continuous or
extending, respectively. The next two results address this question for the classes
of continuous and quasi-continuous modules, respectively.

Theorem 2.16. (Theorem 3.16, [36]) The following conditions are equivalent for a
module M =

⊕
α∈IMα:

(a) M is continuous;
(b) M is quasi-continuous and the Mα are continuous;
(c) Mα is continuous and Mβ-injective for all α 6= β, and (A2) holds.

Proof. See also [40] and Theorem 8 in [39]. �

Theorem 2.17. (Theorem 2.13, [36]) Let {Mα}α∈I be a family of quasi-continuous
modules. Then the following conditions are equivalent:

(a) M =
⊕

α∈IMα is quasi-continuous;
(b)

⊕
β∈I−{α}Mβ is Mα-injective for every α ∈ I;

(c) Mα is Mβ-injective for all α 6= β ∈ I and (A2) holds.

Proof. See also [40] and Theorem 7 in [39]. �

Corollary 2.18. (Theorems 12 and 13, [38]) Let M =
⊕

i∈IMi where I is an index
set. If I is finite or R is right Noetherian, then M is continuous if and only if each
Mi is continuous and Mj-injective for all j 6= i ∈ I.

Example 2.19. (i) Any direct sum of simple modules is quasi-injective, but the
direct sum of their injective hulls need not be injective.
(ii) Let R be a domain, and Ai = E(R) (i = 0, 1, . . . ). Then

⊕∞
i=0Ai need not be

quasi-continuous. Otherwise,
⊕∞

i=1Ai is A0-injective, hence
⊕∞

i=1Ai is injective as
R ⊂ A0, thus E(R) is Σ-injective, and R is a right Ore domain.

Proposition 2.20. (Lemma 7.9, [13]) Let M1 and M2 be extending modules. Then
M = M1 ⊕ M2 is extending if and only if every closed submodule K of M with
K ∩M1 = 0 or K ∩M2 = 0 is a direct summand of M.

Proposition 2.21. (Proposition 7.10, [13]) Let M = M1 ⊕ · · · ⊕Mn such that Mi

is Mj-injective for all 1 ≤ i 6= j ≤ n. Then M is extending iff each Mi is extending.
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In Proposition 2.21, the assumption that Mi is Mj-injective for all 1 ≤ i 6= j ≤ n
is a sufficient but not necessary condition for the direct sum of extending modules
to be extending (e.g, Z⊕ Z is extending, but Z is not Z-injective.)

To obtain conditions for a direct sum of extending modules to be extending,
Mohamed and Müller renamed a notion studied by Oshiro earlier and called it
Ojectivity to honor Oshiro for his contributions to this study.

Definition 2.22. For M , N right R-modules, N is M -ojective if for any submodule
X ≤ M and any homomorphism ϕ : X → N , there exist decompositions M =
M1 ⊕M2 and N = N1 ⊕ N2 together with homomorphisms ϕ1 : M1 → N1 and
ϕ2 : N2 →M2, such that ϕ2 is one-to-one, and for x = m1 +m2 and ϕ(x) = n1 +n2

one has n1 = ϕ1(m1) and m2 = ϕ2(n2). If N is M -ojective and M is N -ojective,
we say that M and N are mutually ojective.

Example 2.23. The Z-module Zpn ⊕ Zpn+1 is self-ojective but not self-injective.

Theorem 2.24. (Theorem 10, [37]) Let M = M1⊕M2. Then Mi is extending and
is Mj-ojective for 1 ≤ i 6= j ≤ 2 if and only if for any closed submodule N , we have
M = N ⊕M ′

1 ⊕M ′
2 with M ′

i ≤Mi for 1 ≤ i ≤ 2.

Recall that a decomposition M =
⊕

i∈IMi is called exchangeable if for any
summand N of M , we have M =

⊕
i∈IM

′
i ⊕N with M ′

i ≤Mi.

Theorem 2.25. (Theorem 11, [37]) Let n ≥ 2 be an integer and let M =
⊕n

i=1Mi.
Then the following conditions are equivalent:

(a) M is extending and the decomposition is exchangeable;
(b) Mi is extending, and M1 ⊕ · · · ⊕ Mi−1 and Mi are mutually ojective for

2 ≤ i ≤ n.

Theorem 2.26. (Theorem 13, [37]) Let M = M1 ⊕ · · · ⊕Mn, where the Mi are
uniform. Then M is extending and the decomposition is exchangeable if and only if
Mi is Mj-ojective for all i 6= j.

More recently, another generalization of relative injectivity was introduced, which
is a necessary rather than a sufficient condition for a direct sum of extending modules
to be extending. This is in contrast to some of the other generalizations we have
considered so far.

Definition 2.27. ([48]) We say that M2 is relatively ∗-injective with respect to M1

if, ∀ K ≤ess M1 and ϕ : K →M2, there exist homomorphisms α, α′, β, β′ such that
the diagram below commutes:

M2
α′→ M1

↑ ϕ ↑ β′
0 → K ↪→ M1

↓ ϕ ↓ β
M2

α→ M2

, i.e. αϕ = β, α′ϕ = β′

and either (α, β) or (α′, β′) is nontrivial.

Example 2.28. Zpk and Zpl are relative ∗-injective.

A result due to Osofsky (Corollary 7.4, [13]) states that, for a uniserial module
M with unique composition series 0 < U < V < M , M ⊕ (V/U) is not extending,
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although both summands are uniform (in fact, one is simple). It can be checked
that M and V/U are not relatively ∗-injective.

When M1 = M2 the definition of relative ∗-injectivity yields the following.

Definition 2.29. We say that M is quasi-∗-injective if, ∀ K ≤ess M , ∀ ϕ : K →M ,
∃ α 6= 0, β 6= 0 such that αϕ = β on K:

0 → K → M
↓ ϕ ↓ β
M

α→ M

Example 2.30. ZZ is quasi-∗-injective, but it is not quasi-injective.

We have the following result which is of interest to our present investigations.

Proposition 2.31. If M = M1⊕M2 is extending then Mi is extending and relatively
Mj-∗-injective for any 1 ≤ i 6= j ≤ 2.

We mention that this condition is, however, not sufficient for direct sums of
extending modules to inherit the property.

Finally, we consider the class of FI-extending modules. Recall that every fully
invariant submodule of such a module is essential in a direct summand. The class
of fully invariant submodules of a module includes some of its most well-known
submodules such as its socle, its singular submodule, the Jacobson radical, or the
second singular submodule etc. One interesting property of the class of FI-extending
modules, is that it is closed under direct sums without any additional requirements.
This also provides a motivation for the study of this notion.

Theorem 2.32. (Theorem 1.3, [7]) Every direct sum of FI-extending modules is
always FI-extending.

Corollary 2.33. (Corollary 1.4, [7]) Let M be a direct sum of extending (e.g.,
uniform) modules. Then M is FI-extending.

In view of Corollary 2.33, we obtain that in any direct sum of extending modules,
every fully invariant submodule will always be essential in a direct summand without
any additional requirements.

So far we have discussed some of the cases when specific direct sums of modules
with a property generalizing injectivity, inherit that property. We conclude this
section by a result of Matlis and Papp showing that if the direct sum of any family
of injective R-modules is injective then the ring has to be right noetherian.

Theorem 2.34. (Theorem 1.11, [36]) R is right noetherian if and only if
⊕

i∈I Ei

is injective for any index set I and any family of injective modules {Ei}i∈I .

3. Baer, Quasi-Baer, and Rickart Modules

Kaplansky introduced the notion of Baer rings in 1955 [26] which was extended
to that of quasi-Baer rings by Clark in 1967 [12]. These two notions have their
roots in functional analysis. A ring R is called (quasi -)Baer if the right annihilator
of any nonempty subset (two-sided ideal) of R is generated by an idempotent as a
right ideal. Examples of Baer rings include (any product of) domains, the Boolean
ring of all subsets of a given set, and the ring of all bounded operators on a Hilbert
space. Examples of quasi-Baer rings include any prime ring and any n-by-n upper
triangular matrix ring over a domain. A prime ring with a nonzero singular ideal is
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quasi-Baer but not Baer. Similarly, an n-by-n upper triangular matrix ring over a
domain which is not a division ring is quasi-Baer but not Baer, e.g.,

( Z Z
0 Z

)
.

In 1980, Chatters and Khuri proved a very useful result. Recall that a ring
R is called right nonsingular if {t ∈ R | rR(t) ≤ess RR} = 0. R is called right
cononsingular if any right ideal, with zero left annihilator, is essential in RR.

Theorem 3.1. (Theorem 2.1, [9]) A ring R is right nonsingular, right extending if
and only if R is a right cononsingular Baer ring.

The notions of Baer and quasi-Baer rings were extended to a general module
theoretic setting using the endomorphism ring of a module in 2004 [44].

Definition 3.2. ([44]) A right R-module M is called Baer if the right annihilator
in M of any nonempty subset of EndR(M) is a direct summand of M .

Example 3.3. Every semisimple module is a Baer module. RR is a Baer module if
R is a Baer ring. Every nonsingular injective (or extending) module is Baer. Z(N)

(∼= Z[x]) is a Baer Z-module, while Z(R) is not a Baer Z-module.

Recall that a module M is said to have the strong summand intersection property
(SSIP) if the intersection of any family of direct summands is a direct summand of
M . Examples include Baer modules and indecomposable modules. The Z-module
Z(N) has the SSIP, while the Z-module Z(R) has not the SSIP.

It was proved in [44] that similar to Theorem 3.1, there are close connections
between extending modules and Baer modules. A module M is called K-nonsingular
if, for all ϕ ∈ EndR(M),Kerϕ ≤ess M implies ϕ = 0. M is called K-cononsingular
if, for all N ≤M, lS(N) = 0 implies N ≤ess M .

The next useful result explicitly characterizes an extending module in terms of
a Baer module analogous to the ring case in Theorem 3.1. This result may help
translate results on (direct sums of) Baer modules to those on (direct sums of)
extending modules and vice-versa.

Theorem 3.4. (Theorem 2.12, [44]) A module M is K-nonsingular and extending
iff M is a K-cononsingular Baer module.

Proposition 3.5. The following statements hold true:
(i) Every direct summand of a Baer module is a Baer module.
(ii) Every Baer module has the SSIP.
(iii) The endomorphism ring of a Baer module is a Baer ring.
(iv) A finitely generated Z-module M is Baer iff M is semisimple or torsion-free.

Proof. See Theorem 2.17, Proposition 2.22, Theorem 4.1, and Proposition 2.19 in
[44]. �

A module M is said to be retractable if, for every 0 6= N ≤ M , HomR(M,N) 6=
0. Note that every free R-module is retractable. The next result shows that the
property of retractability passes to arbitrary direct sums of copies of a retractable
module.

Lemma 3.6. (Lemma 2.8, [47]) Let {Mi}i∈I be a class of retractable modules. Then⊕
i∈IMi is retractable.

We recall a result of Khuri (Theorem 3.2, [29]).

Theorem 3.7. Let MR be nonsingular and retractable. Then EndR(M) is a right
extending ring if and only if M is a extending module.
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The evident close connections between Baer and extending modules (Theorem
3.4) suggest that a similar result of Theorem 3.7 could possibly hold true for the
case of Baer modules. In the following we show that this is the case:

Proposition 3.8. (Proposition 4.6, [44]) Let M be a retractable module. If the
endomorphism ring of M is a Baer ring then M is a Baer module.

Theorem 3.9. (Proposition 2.22, [44] and Theorem 2.5, [47]) The following con-
ditions are equivalent for a module M :

(a) M is a Baer module;
(b) M has the SSIP and Kerϕ ≤⊕ M for all ϕ ∈ S;
(c) EndR(M) is a Baer ring and M is quasi-retractable.

Recall that a module M is called quasi-retractable if, for any left ideal I of
EndR(M) and 0 6= rM (I), Hom(M, rM (I)) 6= 0. Note that every retractable mod-
ule is quasi-retractable. Next, the following example (due to Chatters) exhibits an
R-module which is quasi-retractable but not retractable.

Example 3.10. (Example 3.4, [28]) Let K be a subfield of complex numbers C.
Let R be the ring

[
K C
0 C

]
. Then R is a right nonsingular right extending ring.

Consider the module M = eR where e = ( 1 0
0 0 ). Then M is projective, extending,

and nonsingular (as it is a direct summand of R), hence is Baer by Theorem 3.4.
Thus M is quasi-retractable, by Theorem 3.9. But M is not retractable, since the
endomorphism ring of M , which is isomorphic to K, consists of isomorphisms and
the zero endomorphism; on the other hand, M is not simple, and retractability
implies that there exist nonzero endomorphisms which are not onto.

Proposition 3.11. (Proposition 4.6, [44]) The endomorphism ring of a free module
FR is a Baer ring if and only if FR is a Baer module.

Definition 3.12. ([44]) A right R-module M is called quasi-Baer if for all N EM ,
lS(N) = Se for some e2 = e ∈ S = EndR(M).

Example 3.13. All semisimple modules are quasi-Baer; all Baer and quasi-Baer
rings are quasi-Baer modules, viewed as modules over themselves. Baer modules are
obviously quasi-Baer modules. Every finitely generated abelian group is quasi-Baer.
Every direct sum of copies of a quasi-Baer module is a quasi-Baer module.

The class of quasi-Baer modules is strictly larger than that of Baer modules, as
the next example will show.

Example 3.14. Z(R) is a quasi-Baer module, but is not a Baer module.

Similar to Theorems 3.1 and 3.4, we show that there are also close connections
between the class of FI-extending modules and that of quasi-Baer modules ([44]).
A module M is called FI-K-nonsingular if, for all I E S such that rM (I) ≤ess eM
for e2 = e ∈ S, we have rM (I) = eM . M is called FI-K-cononsingular if, for every
NE⊕M and N ′EN such that ϕ(N ′) 6= 0 for all ϕ ∈ EndR(M), we have N ′ ≤ess N .

Theorem 3.15. (Theorem 3.10, [44]) A module M is FI-K-nonsingular and FI-
extending iff M is quasi-Baer and FI-K-cononsingular.

Corollary 3.16. (Corollary 3.16, [44]) A ring R is right FI-extending and right
FI-K-nonsingular if and only if R is quasi-Baer and right FI-K-cononsingular.

Proposition 3.17. (Proposition 3.8, [44]) The following equivalences hold true for
a module M and S = EndR(M).
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(i) M is FI-K-nonsingular if and only if, for all I E S, rM (I) ≤ess eM for
e2 = e ∈ S, implies I ∩ Se = 0;

(ii) M is FI-K-cononsingular if and only if, for all N E M , rM (lS(N)) ≤⊕ M
implies N ≤ess rM (lS(N)).

Proposition 3.18. (Theorem 3.17 and Theorem 4.1, [44]) The following hold true:
(i) Every direct summand of a quasi-Baer module is a quasi-Baer module.
(ii) The endomorphism ring of a quasi-Baer module is a quasi-Baer ring.

Example 3.19. Let M = Zp∞ , considered as a Z-module. Then it is well-known
that EndZ(M) is the ring of p-adic integers. Since the ring of p-adic integers is a
commutative domain, it is a (quasi-)Baer ring. However M is not a (quasi-)Baer
module.

Proposition 3.20. (Proposition 4.7, [44]) Let M be retractable. Then M is quasi-
Baer if and only if EndR(M) is a quasi-Baer ring.

We remark that Example 3.27 also exhibits that a direct sum of two quasi-Baer
modules need not be quasi-Baer, in general.

Next, we consider the notion of a right Rickart ring, introduced independently
by Maeda and Hattori in 1960. Maeda defined a ring R to be right Rickart if
the right annihilator of an element is generated by an idempotent, as a right ideal.
Hattori called a ring a right p.p. ring if all of its principal right ideals are projective.
Examples include von Neumann regular rings, Baer rings, right (semi-)hereditary
rings, and EndR(R(I)) with R a right hereditary ring and I an index set. It was
discovered that the notion of a right Rickart ring coincides with that of a right p.p.
ring. Motivated by the work on Baer modules [44] and the definition of a right
Rickart ring we introduce the notion of a Rickart module. We do this by utilizing
the endomorphism ring of a module, similar to the case of Baer modules.

Definition 3.21. ([45]) A rightR-moduleM is called Rickart if the right annihilator
in M of any single element of EndR(M) is a direct summand of M .

Example 3.22. Every semisimple module is a Rickart module. RR is a Rickart
module if R is a right Rickart ring. Every Baer module is a Rickart module. Every
projective right R-module over a right hereditary ring R is a Rickart module. The
free Z-module Z(I), for any index set ∅ 6= I, is Rickart, while Z(I) is not a Baer
Z-module if I is uncountable. In particular, Z(N) (∼= Z[x]) is a Rickart (and Baer)
Z-module, while Z(R) is a Rickart but not a Baer Z-module. In general, if R is a
right hereditary ring which is not Baer then every free R-module is Rickart but not
Baer. On the contrary, Zp∞ and Z4 are injective and quasi-injective Z-modules,
respectively, neither of which is a Rickart Z-module.

Note that an indecomposable Rickart module is a Baer module by Theorem 3.9.
The next example provides another explicit instance when a Rickart module is not
a Baer module.

Example 3.23. Let T = {(an)∞n=1 ∈
∏∞

n=1 Z2 | an is eventually constant} and
I = {(an)∞n=1 ∈

∏∞
n=1 Z2 | an = 0 eventually} =

⊕∞
n=1 Z2. Now, consider the ring

R =
(

T T/I
0 T/I

)
and the idempotent e =

(
(1,1,... ) 0+I

0 0+I

)
∈ R. Then M = eR =

(
T T/I
0 0

)
is a Rickart module, but is not Baer because rM

((
I 0
0 0

))
=

(
0 T/I
0 0

)
is not a direct

summand of M where
(

I 0
0 0

)
⊆ EndR(M).
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Recall that a module M is said to have the summand intersection property (SIP)
if the intersection of any two direct summands is a direct summand of M . M is said
to satisfy D2 condition if, ∀N ≤M with M/N ∼= M ′ ≤⊕ M , we have N ≤⊕ M .

Proposition 3.24. The following statements hold true:
(i) Every direct summand of a Rickart module is a Rickart module.
(ii) Every Rickart module satisfies D2 condition.
(iii) Every Rickart module is K-nonsingular.
(iv) Every Rickart module has the SIP.
(v) The endomorphism ring of a Rickart module is a right Rickart ring.

Proof. See Theorem 2.7 and Propositions 2.11, 2.12, 2.16, and 3.2 in [32]. �

Theorem 3.25. (Proposition 2.11 and Theorem 3.9, [32]) The following conditions
are equivalent for a module M and S = EndR(M):

(a) M is a Rickart module;
(b) M satisfies D2 condition, and Imϕ is isomorphic to a direct summand of

M for any ϕ ∈ S;
(c) S is a right Rickart ring and M is k-local-retractable.

Recall that a module M is called k-local-retractable if rM (ϕ) = rS(ϕ)(M) for any
ϕ ∈ S = EndR(M). Note that every free R-module is k-local-retractable.

Proposition 3.26. (Corollary 5.3, [32]) The endomorphism ring of a free module
FR is a right Rickart ring if and only if FR is a Rickart module.

Until now, we have been focused on developing the notions and presenting basic
properties of Baer, quasi-Baer, and Rickart modules. As we see from Propositions
3.5(i), 3.18(i), and 3.24(i), every direct summand each of Baer, quasi-Baer, and
Rickart modules inherits the respective property. It is, therefore, natural to ask if
these properties go to their respective direct sums? The next three examples and
the following proposition show that this is not the case, in general. In fact, the
Baer and Rickart properties are not inherited by even a direct sum of copies of such
modules. In contrast, we will see in Corollary 4.15 that a direct sum of copies of a
quasi-Baer module does, in fact, inherit the quasi-Baer property. The focus of our
investigations in Sections 4, 5, and 6, will be these direct sum questions.

Example 3.27. It is easy to see that Z and Zp are both Baer Z-modules where
p is a prime number in N. However, the Z-module M = Z ⊕ Zp is not Rickart:
Consider the endomorphism ϕ ∈ EndR(M) defined by ϕ : (m,n) 7→ (0,m), then
Kerϕ = pZ⊕ Zp ≤ess M is not a direct summand of M .

Example 3.28. LetR=
( Z Z

0 Z
)
, e1 =( 1 0

0 0 ) and e2 =( 0 0
0 1 ). Then the modules e1R=

(
Z Z
0 0

)
and e2R=

(
0 0
0 Z

)
are Baer R-modules (since End(e1R) ∼= Z ∼= End(e2R)). But

M = RR is not a Rickart module. Since EndR(M) ∼= R, the only direct summands
of M are: ( 0 0

0 0 ),
( Z Z

0 Z
)
,
(

Z Z
0 0

)
and ( 0 n

0 1 ) Z where n ∈ Z. Consider ( 2 1
0 0 ) ∈ EndR(M).

Then rM (( 2 1
0 0 )) =

(
0 −1
0 2

)
Z is not a direct summand of M .

Example 3.29. M = Z[x] is a Baer Z[x]-module, but M ⊕M is not a Rickart
Z[x]-module (more details in Example 6.8).

Our next result extends Example 3.27 to arbitrary modules and motivates our
study.

Proposition 3.30. (Proposition 2.1, [33]) If M is an indecomposable Rickart mod-
ule which has a nonzero maximal submodule N , then M ⊕ (M/N) is not a Baer
module, while M and M/N are Baer modules.
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4. Direct sums of Baer and quasi-Baer modules

In this section we will show results on direct sums of Baer and quasi-Baer modules
and list conditions which allow for such direct sums to inherit these properties.
Recall that a sufficient condition for a finite direct sum of extending modules to be
extending is that each direct summand be relatively injective to all others (see [22]
or Proposition 7.10 in [13]). We prove that an analogue holds true also for the case
of Baer modules.

Definition 4.1. (Definition 1.3, [47], see also [32]) A module M is called N -Rickart
(or relatively Rickart to N) if, for every homomorphism ϕ : M → N , Kerϕ ≤⊕ M .

Theorem 4.2. (Theorem 3.19, [47]) Let {Mi}1≤i≤n be a class of Baer modules
where n ∈ N. Assume that, for any i 6= j, Mi and Mj are relative Rickart and
relative injective. Then

⊕n
i=1 Mi is a Baer module.

The preceding result was improved further by reducing the requirement of relative
injectivity to a smaller subset of a finite index set I in [33] as follows.

Proposition 4.3. (Proposition 2.14, [33]) Assume that there exists an ordering
I = {1, 2, · · · , n} for a class of Baer R-modules {Mi}i∈I such that Mi is Mj-injective
for all i < j ∈ I. Then

⊕n
i=1Mi is a Baer module if and only if Mi is Mj-Rickart

for all i, j ∈ I.

Using Proposition 4.3, we obtain the following useful consequence. First recall
that in view of Theorem 3.4, every nonsingular extending module is Baer.

Theorem 4.4. (Theorem 2.16, [33]) Let M be a nonsingular extending module.
Then M and E(M) are relatively Rickart to each other and E(M) ⊕M is a Baer
module.

Remark 4.5. In the hypothesis of Theorem 4.4, it suffices to have that E(M) be
K-nonsingular instead of M to be nonsingular. Since the K-nonsingularity of E(M)
is inherited by M (see Proposition 2.18, [46]), the hypothesis of Theorem 4.4 can
be improved to “if M is extending and E(M) is K-nonsingular then E(M) ⊕M is
a Baer module”.

Next example shows that the extending condition for the module M in Theorem
4.4 is not superfluous.

Example 4.6. Let A =
∏∞

n=1 Z2. Then the ring A is commutative, von Neumann
regular, and Baer. Consider R = {(an)∞n=1 ∈ A | an is eventually constant}, a
subring of A. Then R is a von Neumann regular ring which is not a Baer ring (see
Example 7.54, [30]). Note that M = RR is not extending, but is a nonsingular
Rickart module. On the other hand, the injective hull, E(M) = A, is an injective
Rickart R-module. In this case, E(M) is M -injective and M -Rickart, but M is not
E(M)-Rickart: For ϕ = (1, 0, 1, 0, · · · , 1, 0, · · · ) ∈ HomR(M,E(M)), Kerϕ is not a
direct summand of M . Thus, E(M)⊕M is not a Rickart module.

The nonsingular condition for the module M in Theorem 4.4 is not superfluous
(and can not be weakened to K-nonsingularity) as the next example shows.

Example 4.7. Consider the Z-module M = Zp where p is a prime number. Then
M is not nonsingular but is K-nonsingular extending. However, E(M) = Zp∞ is not
a Rickart Z-module. Thus, E(M)⊕M = Zp∞ ⊕ Zp is not a Rickart Z-module.
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Corollary 4.8. (Corollary 2.20, [33]) If M is a nonsingular extending module then
E(M)(n) ⊕M is a Baer module for any n ∈ N.

Definition 4.9. A module M is called (finitely) Σ-Rickart if every (finite) direct
sum of copies of M is a Rickart module. A (finitely) Σ-Baer module and a (finitely)
Σ-extending module are defined similarly.

We remark that every right (semi)hereditary ring R is precisely (finitely) Σ-
Rickart as a right R-module (see Theorems 6.2 and 6.16). Also, if M is a finitely
generated retractable module and if EndR(M) is a right (semi)hereditary ring then
M is a (finitely) Σ-Rickart module (see Proposition 6.22 and Corollary 6.29).

The next corollary provides a rich source of examples of Baer modules (hence, of
Rickart modules).

Corollary 4.10. (Corollary 2.22, [33]) If M is a nonsingular finitely Σ-extending
module then M and E(M) are finitely Σ-Baer modules, and E(M)(m) ⊕M (n) is a
Baer (hence, Rickart) module for any m,n ∈ N.

An explicit application of Theorem 4.4 and Corollary 4.10 is exhibited in the next
examples.

Example 4.11. Let R =
∏∞

n=1 Z2 and M =
⊕∞

n=1 Z2 as a right R-module. Since
M is a nonsingular finitely Σ-extending module, R(m)⊕M (n) = E(M)(m)⊕M (n) is
a Baer R-module for any m,n ∈ N by Corollary 4.10. (Compare to Example 5.11.)

Example 4.12. Consider M = Z(n) as a right Z-module for any n ∈ N. Then M
is a nonsingular extending Z-module and E(M) = Q(n). Thus, from Theorem 4.4,
E(M)⊕M = Q(n) ⊕ Z(n) is a Baer Z-module. In particular, Q(m) ⊕ Z(n) is a Baer
Z-module for m,n ∈ N. We remark that Z is a nonsingular finitely Σ-extending
Z-module.

Note that for any n ∈ N, Z(n) is an extending and Baer Z-module, Z(N) is a Baer
but not an extending Z-module (Page 56, [13]), and Z(R) is a Rickart but neither a
Baer nor an extending Z-module (Remark 2.28, [32]).

Theorem 4.13. (Theorem 3.18, [44]) Let M1 and M2 be quasi-Baer modules. If
we have the property ψ(x) = 0 ∀ 0 6= ψ ∈ Hom(Mi,Mj) implies x = 0 (i 6= j,
i, j = 1, 2) then M1 ⊕M2 is quasi-Baer.

Proposition 4.14. (Proposition 3.19, [44])
⊕

i∈IMi is quasi-Baer if Mi is quasi-
Baer and subisomorphic to (i.e. isomorphic to a submodule of) Mj for all i 6= j ∈ I
where I is an index set.

Corollary 4.15. A module M is quasi-Baer if and only if M (I) is a quasi-Baer
module for any nonempty index set I.

Corollary 4.16. (Corollary 3.20, [44]) A free module over a quasi-Baer ring is a
quasi-Baer module.

We can point out now that we have a general method of producing quasi-Baer
modules that are not Baer modules.

Example 4.17. An infinitely generated free module M over a non-Dedekind com-
mutative domain R is not a Baer R-module. On the other hand, since M is a free
R-module over a quasi-Baer ring, M is a quasi-Baer module.
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Next, we provide a complete characterization for an arbitrary direct sum of (quasi-
)Baer modules to be (quasi-)Baer, provided that each module is fully invariant in
the direct sum (see Proposition 2.4.15 in [49]).

Proposition 4.18. (Proposition 3.20, [47]) Let Mi E
⊕

j∈IMj, ∀ i ∈ I, I is an
arbitrary index set. Then

⊕
j∈IMj is a (quasi-)Baer module if and only if Mi is a

(quasi-)Baer module for all i ∈ I.

5. Direct sums of Rickart modules

In this section we provide and exemplify a number of relative conditions for
Rickart modules. These conditions are then used to obtain results for direct sums of
Rickart modules to inherit the Rickart property. Recall that a module M is called
N -Rickart (or relatively Rickart to N) if, for every homomorphism ϕ : M → N ,
Kerϕ ≤⊕ M . In particular, a right R-module M is Rickart iff M is M -Rickart.

Our next characterization extends Proposition 3.24(i).

Theorem 5.1. (Theorem 2.6, [33]) Let M and N be right R-modules. Then M
is N -Rickart if and only if for any direct summand M ′ ≤⊕ M and any submodule
N ′ ≤ N , M ′ is N ′-Rickart.

Proposition 5.2. (Proposition 2.9, [33]) Let {Mi}i∈I and N be right R-modules.
Then the following implications hold:

(i) If N has the SIP, then N is
⊕

i∈IMi-Rickart if and only if N is Mi-Rickart
for all i ∈ I, I = {1, 2, · · · , n}.

(ii) If N has the SSIP, then N is
⊕

i∈IMi-Rickart if and only if N is Mi-Rickart
for all i ∈ I, I is an arbitrary index set.

(iii) If N has the SSIP, then N is
∏

i∈IMi-Rickart if and only if N is Mi-Rickart
for all i ∈ I, I is an arbitrary index set.

Corollary 5.3. (Corollary 2.10, [33]) For each i ∈ I = {1, 2, · · · , n}, Mi is⊕
j∈IMj-Rickart if and only if Mi is Mj-Rickart for all j ∈ I.

While from Corollary 5.3 Mi is
⊕n

j=1Mj-Rickart if Mi is Mj-Rickart for all 1 ≤
j ≤ n, the next example shows that

⊕n
i=1Mi may not be Mj-Rickart even though

Mi is Mj-Rickart for all 1 ≤ i ≤ n.

Example 5.4. Let R = Z[x] and let M1 = M2 = N = Z[x] be right R-modules.
While Mi is N -Rickart for all i = 1, 2, M1 ⊕M2 is not N -Rickart: Consider ϕ =
(2, x) ∈ HomR(M1 ⊕M2, N). Then Kerϕ = (x,−2)R is not a direct summand of
M1 ⊕M2.

In the next result, we present conditions under which
⊕n

i=1Mi is Mj-Rickart.

Theorem 5.5. (Theorem 2.12, [33]) Assume that there exists an ordering I =
{1, 2, · · · , n} for a class of R-modules {Mi}i∈I such that Mi is Mj-injective for all
i < j ∈ I. Then

⊕n
i=1Mi is N -Rickart if and only if Mi is N -Rickart for all i ∈ I,

for any right R-module N .

Example 5.4 also exhibits that the one-sided relative injective condition in The-
orem 5.5 is not superfluous. (See that M1 is not M2-injective in that example.)

Corollary 5.6. (Corollary 2.13, [33]) Assume that there exists an ordering I =
{1, 2, · · · , n} for a class of R-modules {Mi}i∈I such that Mi is Mj-injective for all
i < j ∈ I. Then

⊕n
i=1Mi is a Rickart module if and only if Mi is Mj-Rickart for

all i, j ∈ I.
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Definition 5.7. ([33]) A module M is called N -C2 (or relatively C2 to N) if any
submodule N ′ ≤ N with N ′ ∼= M ′ ≤⊕ M implies N ′ ≤⊕ N . Hence, M has C2

condition iff M is M -C2.

We now provide another instance when
⊕n

i=1Mi isMj-Rickart ifMi isMj-Rickart
for all 1 ≤ i ≤ n (cf. Corollary 5.6).

Theorem 5.8. (Theorem 2.29, [33]) Let {Mi}i∈I be a class of right R-modules
where I = {1, 2, · · · , n}. Assume that Mi is Mj-C2 for all i, j ∈ I. Then

⊕n
i=1Mi

is a Rickart module if and only if Mi is Mj-Rickart for all i, j ∈ I.

In the next example, we show that the relative C2 condition in Theorem 5.8 and
the one-sided relative injective condition in Corollary 5.6 are not superfluous.

Example 5.9. It is easy to see that Z[12 ] and Z are Rickart Z-modules as each
is a domain. Z[12 ] and Z are relatively Rickart to each other by Theorem 5.1 and
because every 0 6= ϕ ∈ HomR(Z,Z[12 ]) is a monomorphism. Further, Z[12 ] is Z-C2,
but Z is not Z[12 ]-C2 and Z[12 ] is not Z-injective. For ψ ∈ EndZ(Z[12 ]⊕Z) defined by
ψ : (a,m) 7→ (3a −m, 0), Kerψ = {(m, 3m) |m ∈ Z} �⊕ Z[12 ] ⊕ Z, hence Z[12 ] ⊕ Z
is not a Rickart Z-module.

Corollary 5.10. (Corollary 2.31, [33]) Let M be a Rickart module with C2 condi-
tion. Then any finite direct sum of copies of M is a Rickart module.

Next example follows from Corollary 5.10.

Example 5.11. Consider R =
∏∞

n=1 Z2 and M =
⊕∞

n=1 Z2 as a right R-module.
Since M is a nonsingular quasi-injective R-module, M is a Rickart module with C2

condition. Thus by Corollary 5.10, M (n) is a Rickart module for any n ∈ N.

Theorem 5.12. (Theorem 2.33, [33]) A module M = M1⊕M2 is Rickart if and only
if M1 and M2 are Rickart modules, M1 is M2-Rickart, and for any ϕ ∈ EndR(M)
with Kerϕ ∩M1 = 0, Kerϕ ≤⊕ M .

We remark that in Example 3.29 while M1 = Z[x] is M1-Rickart, it does not
satisfy the last part of the statement of Theorem 5.12. Thus Z[x] ⊕ Z[x] is not a
Rickart Z[x]-module.

We conclude this section with providing a complete characterization for an ar-
bitrary direct sum of Rickart modules to be Rickart, provided that each module is
fully invariant in the direct sum.

Proposition 5.13. (Proposition 2.34, [33]) Let Mi E
⊕

j∈IMj, ∀ i ∈ I, I is an
arbitrary index set. Then

⊕
j∈IMj is a Rickart module if and only if Mi is a Rickart

module for all i ∈ I.

6. Free Rickart and free Baer modules

The last section of our paper is devoted to the case of a special case of direct
sums, namely that of free modules over the base ring. We will obtain conditions for
the base ring such that free (and projective) modules over the base ring are Rickart
modules. To obtain our first main result of this section (Theorem 6.2), we begin
with the following well-known result of L. Small.

Theorem 6.1. (Proposition 7.63, [30]) R is a right semihereditary ring iff Matn(R)
is a right Rickart ring for all n ∈ N.
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Theorem 6.2. (Theorem 3.6, [33]) The following are equivalent for a ring R:
(a) every finitely generated free (projective) right R-module is a Rickart module;
(b) Matn(R) is a right Rickart ring for all n ∈ N;
(c) every finite direct sum of copies of R(k) is a Rickart R-module for some

k ∈ N;
(d) Matk(R) is a right semihereditary ring for some k ∈ N;
(e) R is a right semihereditary ring.

Note that (d)⇔(e) in Theorem 6.2 was also proved by Small in a conceptual
manner, using different arguments.

We recall that a module is said to be torsionless if it can be embedded in a direct
product of copies of the base ring. In our next result we provide a characterization
of rings R for which every finitely generated free right R-module is Baer.

Theorem 6.3. (Theorem 3.5, [47]) The following are equivalent for a ring R:
(a) every finitely generated free (projective) right R-module is a Baer module;
(b) every finitely generated torsionless right R-module is projective;
(c) every finitely generated torsionless left R-module is projective;
(d) R is left semihereditary and right Π-coherent (i.e. every finitely generated

torsionless right R-module is finitely presented);
(e) R is right semihereditary and left Π-coherent;
(f) Mn(R) is Baer ring for all n ∈ N.

In particular, a ring R satisfying these equivalent conditions is right and left semi-
hereditary.

Remark 6.4. Note that Theorem 6.3 generalizes Theorem 2.2 in [16], which states
that, for a von Neumann regular ring R, every finitely generated torsionless right
R-module embeds in a free right R-module (FGTF property) iff Mn(R) is a Baer
ring for every n ∈ N. Our result in fact establishes that every finitely generated
torsionless right module is projective iff Mn(R) is Baer for all n ∈ N, even in the
absence of von Neumann regularity of R.

As a consequence of Theorems 6.2 and 6.3, we have the next three corollaries.

Corollary 6.5. (Corollary 3.10, [33]) R is a left Π-coherent ring and every finitely
generated free R-module is Rickart iff every finitely generated free R-module is Baer.

We obtain a characterization of Prüfer domains in terms of the Rickart or Baer
property for finitely generated free (projective) right R-modules.

Corollary 6.6. (Corollary 3.7, [33] and Corollary 15, [54]) Let R be a commutative
integral domain. Then the following conditions are equivalent:

(a) every finitely generated free (projective) right R-module is a Baer module;
(b) every finitely generated free (projective) right R-module is a Rickart module;
(c) the free R-module R(k) is a Rickart module for some k ≥ 2;
(d) the free R-module R(2) is a Rickart module;
(e) Mat2(R) is a right Rickart ring;
(f) R is a Prüfer domain.

Note that in Part(c) of Corollary 6.6, k ≥ 2 is required. For k = 1 we have the
example of the commutative domain Z (obviously a Rickart Z-module), which is not
a Prüfer domain.
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We also obtain the following characterization of a Prüfer domain R in terms
of the summand intersection property for finitely generated free (projective) right
R-modules.

Corollary 6.7. (Corollary 3.8, [33]) Let R be a commutative integral domain. Then
the following conditions are equivalent:

(a) every finitely generated free (projective) right R-module has the SIP;
(b) the free R-module R(k) has the SIP for some k ≥ 3;
(c) the free R-module R(3) has the SIP;
(d) R is a Prüfer domain.

The next example shows a commutative integral domain R for which the free
module R(2) has the SIP yet R is not a Prüfer domain. Thus, by Corollary 6.7 R(3)

does not have the SIP. In this case, R(2) is not a Rickart R-module as well.

Example 6.8. Consider R = Z[x] which is not a Prüfer domain. LetM = (R⊕R)R.
If (g, h)R and (g′, h′)R are two proper direct summands of R⊕R for g, g′, h, h′ ∈ R,
then by simple calculations we can show that either (g, h)R ∩ (g′, h′)R = (0, 0) or
(g, h)R = (g′, h′)R. Thus M has the SIP but R⊕R⊕R can not satisfy the SIP as a
Z[x]-module by Corollary 6.7. Furthermore, let N = RR. By Example 5.4 we know
that M is not N -Rickart. Thus, by Theorem 5.1 M is not a Rickart Z[x]-module.

Note that Z[x] and Z[x] ⊕ Z[x] are Rickart Z-modules because Z[x] ⊕ Z[x] ∼=Z
Z(N) ⊕ Z(N) ∼=Z Z(N) (Remark 2.28, [32]).

Definition 6.9. A ring R is said to be right n-hereditary if every n-generated right
ideal of R is projective.

Theorem 6.10. (Proposition 3.13, [33]) The following conditions are equivalent for
a ring R and a fixed n ∈ N:

(a) every n-generated free (projective) right R-module is a Rickart module;
(b) the free R-module R(n) is a Rickart module;
(c) Matn(R) is a right Rickart ring;
(d) R is a right n-hereditary ring.

For a fixed n ∈ N, we obtain the following characterization for every n-generated
free R-module to be Baer.

Theorem 6.11. (Theorem 3.12, [47]) The following conditions are equivalent for a
ring R and a fixed n ∈ N:

(a) every n-generated free (projective) right R-module is a Baer module;
(b) every n-generated torsionless right R-module is projective.

It is interesting to note that, as opposed to related notions (such as injectivity,
quasi-injectivity, continuity and quasi-continuity), having M ⊕ M Baer does not
imply that M ⊕M ⊕M is also Baer.

We start with a lemma and by recalling the concept of an n-fir.

Definition 6.12. A ring R is said to be a right n-fir if any right ideal that can be
generated with ≤ n elements is free of unique rank (i.e., for every I ≤ RR, I ∼= R(k)

for some k ≤ n, and if I ∼= R(l) ⇒ k = l) (for alternate definitions see Theorem 1.1,
[10]).

The definition of (right) n-firs is left-right symmetric, thus we will call such rings
simply n-firs. For more information on n-firs, see [10].
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Theorem 6.13. (Theorem 3.16, [47]) Let R be a n-fir. Then R(n) is a Baer R-
module. Consequently, Mn(R) is a Baer ring.

We remark that a right n-hereditary ring may not be a right (n + 1)-hereditary
ring. In Example 6.8, while Z[x] is a right 1-hereditary ring, Z[x] is not a right
2-hereditary ring. The next example due to Jøndrup [24] exhibits a module M such
that M (n) is a Baer module, while M (n+1) is not a Rickart module.

Example 6.14. ([24]) Let n be any natural number, K be any commutative field,
and let R be the K-algebra on the 2(n+1) generators Xi, Yi (i = 1, · · · , n+1) with
the defining relation

n+1∑
i=1

XiYi = 0.

Since R is an n-fir (Theorem 2.3, [24]), R(n) is a Baer R-module by Theorem 6.13.
In particular, since R is not (n+ 1)-hereditary, R(n+1) is not a Rickart R-module.

Next, we provide an alternate proof of an earlier result of Small using the theory
of Rickart modules (see Theorem 7.62, [30]).

Theorem 6.15. For any k ∈ N, R is a right hereditary ring if and only if Matk(R)
is a right hereditary ring.

Theorem 6.16. (Theorem 2.26, [32] and Proposition 3.20, [33]) The following con-
ditions are equivalent for a ring R:

(a) every free (projective) right R-module is a Rickart module;
(b) every direct sum of copies of R(k) is a Rickart R-module for some k ∈ N;
(c) every column finite matrix ring over R, CFM(R), is a right Rickart ring;
(d) the free R-module R(R) is a Rickart module;
(e) CFMΓ0(R) is a right Rickart ring for |Γ0| = |R|;
(f) Matk(R) is a right hereditary ring for some k ∈ N;
(g) R is a right hereditary ring.

In the following we characterize the class of rings R for which every projective R-
module is a Baer module. A ring R is said to be a semiprimary ring if the Jacobson
radical, Rad(R), is nilpotent and R/Rad(R) is semisimple.

Theorem 6.17. (Theorem 3.3, [47] and Corollary 3.23, [33]) The following condi-
tions are equivalent for a ring R:

(a) every free (projective) right R-module is a Rickart module and R is a semipri-
mary ring;

(b) every free (projective) right R-module is a Baer module;
(c) every free (projective) right R-module has the SSIP;
(d) R is a right hereditary, semiprimary ring.

We remark that in the preceding result,‘projective’ can be replaced by ‘flat’. The
semiprimary condition in Theorem 6.17(d) is not superfluous as next example shows.

Example 6.18. Z is a non-semiprimary right hereditary ring. Z(R) is a Rickart
Z-module which is not a Baer Z-module (Remark 2.28, [32]).

From Theorem 2.20 in [46] (see Theorem 6.21) we showed that a ring is semisimple
artinian if and only if every R-module is Baer. For the commutative rings one can
restrict the requirement of “every R-module” to “every free R-module” to obtain
the same conclusion.
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Proposition 6.19. (Theorem 6, [55]) Let R be a commutative ring. Every free
R-module is Baer if and only if R is semisimple artinian. In particular, every
R-module is Baer if every free R-module is so.

Theorem 6.20. (Theorem 3.18, [33]) The following are equivalent for a ring R:
(a) every finitely generated free (projective) right R-module is a Rickart module

with C2 condition;
(b) every finitely generated free (projective) right R-module is a Rickart module

with C3 condition;
(c) the free module R(k) is a Rickart module with C2 condition for some k ∈ N;
(d) the free module R(k) is a Rickart module with C3 condition for some k ≥ 2;
(e) the free module R(2) is a Rickart module with C3 condition;
(f) R is a von Neumann regular ring.

We remark that in Part(d) of Theorem 6.20, k ≥ 2 is required. For k = 1,
even though RR may be a Rickart module with C3 condition, R may not be a
von Neumann regular ring. In Example 6.8, Z[x] is a Rickart Z[x]-module with C3

condition while Z[x] is not a von Neumann regular ring.

We now characterize the semisimple artinian rings in terms of Rickart and Baer
modules.

Theorem 6.21. (Theorem 2.20, [46] and Theorem 2.25, [32]) The following condi-
tions are equivalent for a ring R:

(a) every right R-module is a Baer module;
(b) every right R-module is a Rickart module;
(c) every extending right R-module is a Rickart module;
(d) every injective right R-module is a Rickart module;
(e) every injective right R-module is a Baer module;
(f) R is a semisimple artinian ring.

We extend Theorem 6.1 to a module theoretic setting using Lemma 3.6 (every
direct sum of copies of an arbitrary retractable module is retractable).

Proposition 6.22. (Proposition 3.2, [33]) Let M be a right R-module. If every
finite direct sum of copies of M is a Rickart module then EndR(M) is a right
semihereditary ring. Conversely, if M is a retractable module and if EndR(M) is a
right semihereditary ring, then every finite direct sum of copies of M is a Rickart
module.

The next example illustrates the necessary direction in Proposition 6.22.

Example 6.23. Consider M = Q⊕Z as a Z-module. Note that M (n) = Q(n)⊕Z(n)

is a Rickart Z-module for any n ∈ N (see Example 4.12). It is easy to see that
EndZ(M) =

( Q Q
0 Z

)
is a right semihereditary ring.

The following example shows that the condition “M is a retractable module” in
the hypothesis of the converse in Proposition 6.22, is not superfluous.

Example 6.24. Consider M = Zp∞ as a right Z-module. Then it is well-known
that M is not retractable. Note that EndZ(M) is the ring of p-adic integers which
is a Dedekind domain and hence is a (semi)hereditary ring. However, M is not a
Rickart Z-module, (and neither are direct sums of copies of M).

As a consequence of Theorem 6.3, we can obtain the following result for finite
direct sums of copies of an arbitrary retractable Baer module.
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Corollary 6.25. (Corollary 3.7, [47]) Let M be a retractable module. Then every
finite direct sum of copies of M is a Baer module iff End(M) is left semihereditary
and right Π-coherent.

Corollary 6.26. (Corollary 3.14, [33]) Let M be a retractable module. Then M (n)

is a Rickart module iff EndR(M) is a right n-hereditary ring for a fixed n ∈ N.

Our next result provides a rich source of more examples of when the concepts of
Rickart and Baer modules differ.

Proposition 6.27. (Proposition 3.11, [33]) Let R be a right semihereditary ring
which is not a Baer ring. Then every finitely generated free R-module is Rickart,
but is not Baer.

In Example 4.6, the ring R exhibits right semihereditary which is not Baer.

Proposition 6.28. (Proposition 3.19, [33]) Let M be an indecomposable artinian
Rickart module. Then any finite direct sum of copies of M is a Rickart module and
satisfies C2 condition.

The next proposition extends Theorem 6.16 to endomorphism rings of finitely
generated retractable modules.

Proposition 6.29. (Corollary 3.21, [33]) Let M be a finitely generated retractable
module. Then every direct sum of copies of M is a Rickart module iff EndR(M) is
a right hereditary ring.

Proposition 6.30. (Proposition 2.29, [32]) Let R be a right hereditary ring which
is not a Baer ring. Then every free right R-module is Rickart, but is not Baer.

Proposition 6.31. Let R be a right hereditary ring which is not a semiprimary
ring. Then there exist an index set I such that M (I) is a Rickart R-module, but is
not a Baer R-module.

Example 6.32. From Example 6.18, since Z is a non-semiprimary right hereditary
ring, there exists an index set R such that Z(R) is a Rickart Z-module which is not
a Baer Z-module.

In the next result we provide a characterization for an arbitrary direct sum of
copies of a Baer module to be Baer, for the case when M is finitely generated and
retractable. In contrast to Corollary 6.25, we require the modules to be finitely
generated.

Theorem 6.33. (Theorem 3.4, [47]) Let M be a finitely generated retractable mod-
ule. Then every direct sum of copies of M is a Baer module iff EndR(M) is semipri-
mary and (right) hereditary.

Given the connection provided by Theorem 3.4 between extending modules and
Baer modules, we obtain the following result concerning Σ-extending (respectively,
n-Σ-extending) modules, i.e., modules M with the property that direct sums of
arbitrary (respectively, n) copies of M are extending. We generalize in this the
results of Lemma 2.4 on polyform modules in [11] (recall that every polyform module
is K-nonsingular).

Theorem 6.34. (Theorem 3.18, [47]) Let M be a K-nonsingular module, with S =
EndR(M).

(1) If M (n) is extending, then every n-generated right torsionless S-module is
projective; it follows that S is a right n-hereditary ring.
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(2) If M (n) is extending for every n ∈ N, then S is right a semihereditary and
left Π-coherent ring.

(3) If M (I) is extending for every index set I, and M is finitely generated, then
S is a semiprimary hereditary ring.

A more detailed discussion on these necessary conditions, as well as completing
sufficient conditions for a module to be Σ-extending will appear in a sequel to this
paper.

Proposition 6.35. (Proposition 2.14, [47]) If a Baer module M can be decomposed
into a finite direct sum of indecomposable summands, then every arbitrary direct
sum decomposition of M is finite.

If the endomorphism ring of a module is a PID (principal ideal domain), we
obtain the following result, due to Wilson, which has been reformulated to our
setting (Lemma 4, [52]).

Proposition 6.36. (Proposition 3.11, [47]) Let M be a finite direct sum of copies
of some finite rank, torsion-free module whose endomorphism ring is a PID. Then
M is Baer module.

We conclude this paper with information on some references for further results
on the topics we have discussed. The list of these references is only suggestive and is
not complete by any means. For results on Baer, quasi-Baer, and Rickart rings, see
for example, [1], [2], [3], [4], [5], [6], [12], [14], [15], [20], [23], [24], [26], [35], [42], [54].
Results on Baer, quasi-Baer, and Rickart modules and related notions can be found
in [21], [27], [28], [29], [31], [32], [33], [34], [44], [45], [46], [47], [49], [50], [51], [52],
[55]. For results on (FI-)extending and (quasi-)continuous modules, see for example,
[7], [9], [11], [13], [19], [22], [25], [36], [37], [38], [39], [43], [48].

OPEN PROBLEMS:
1. Obtain a characterization for a finite (infinite) direct sum of Baer modules to be
Baer.
2. Obtain a characterization for a finite (infinite) direct sum of quasi-Baer modules
to be quasi-Baer.
3. Obtain a characterization for a finite (infinite) direct sum of Rickart modules to
be Rickart.
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