1. Let \(\mathcal{F} \) be a field of subsets of a set \(X \). Let \(\nu: \mathcal{F} \to \mathbb{C} \) be \(\sigma \)-additive.\(^1\) Let \(|\nu| \) be the variation\(^2\) of \(\nu \). Prove that \(|\nu| \) is \(\sigma \)-additive.

2. Let \(A \) be the set of all functions \(f: [0, \infty) \to \mathbb{C} \) such that for each \(b \in (0, \infty) \), \(f \) is absolutely continuous on \([0, b] \). For each \(p \in (0, \infty) \), let \(L^p \) denote the set of all Lebesgue-measurable functions \(f: [0, \infty) \to \mathbb{C} \) such that

\[
\int_0^\infty |f(x)|^p \, dx < \infty.
\]

(a) Give an example of a real-valued function \(f \in \bigcap_{0 < p < \infty} L^p \cap A \) such that

\[
\limsup_{b \to \infty} f(b) = \infty.
\]

(Don’t work hard. There is a simple example. It would not be hard to give a formula for \(f \) but you don’t have to give a formula. A suitably labelled sketch of the graph and/or a suitable description in words would be fine.)

(b) Let \(p \in (0, \infty) \), let \(f \in L^p \cap A \), and suppose \(f' \in L^1 \). Prove that

\[
f(b) \to 0 \quad \text{as } b \to \infty.
\]

\(^1\) To say that \(\nu \) is \(\sigma \)-additive means that for each finite or countable disjoint sequence \((F_n)\) in \(\mathcal{F} \), if \(\bigcup_n F_n \in \mathcal{F} \), then \(\nu(\bigcup_n F_n) = \sum_n \nu(F_n) \). Incidentally, this definition implies that if \(\nu \) is \(\sigma \)-additive, then \(\nu(\emptyset) = 0 \), because \(\emptyset \) is the union of the empty sequence of elements of \(\mathcal{F} \) and a sum with no terms has the value 0.

\(^2\) Reminder: The variation of \(\nu \) is the function \(|\nu|: \mathcal{F} \to [0, \infty] \) defined by

\[
|\nu|(E) = \sup \sum_m |\nu(E_m)|,
\]

where \((E_m)\) ranges over all finite disjoint sequences of elements of \(\mathcal{F} \) such that \(\bigcup_m E_m \subseteq E \). (We would get the same result if we required \(\bigcup_m E_m = E \). This is easy to see and you may take it for granted.)
3. Let X be a topological space. By definition, $\text{Baire}(X)$ is the σ-field on X generated by \mathcal{H}, where $\mathcal{H} = \{ f^{-1}[B] : f \in C(X, \mathbb{R}) \text{ and } B \in \text{Borel}(\mathbb{R}) \}$. The elements of $\text{Baire}(X)$ are called Baire subsets of X.

(a) Let $A \in \text{Baire}(X)$. Prove that there is a continuous function $f: X \to \mathbb{R}^N$ such that $A \in \mathcal{E}$, where $\mathcal{E} = \{ f^{-1}[E] : E \in \text{Borel}(\mathbb{R}^N) \}$. (Reminder: \mathbb{R}^N denotes the space of all infinite sequences of real numbers, with its usual product topology. In other words, \mathbb{R}^N denotes the Cartesian product of a countably infinite number of copies of the real line \mathbb{R}.)

(b) Let K be a compact Baire subset of X. Prove that K is closed in X and that K is a countable intersection of open subsets of X. (Warning: X need not be Hausdorff.)

4. Let E be a vector space and let M and N be linear subspaces of E such that $M \cap N = \{0\}$. Define P and Q on $M + N$ by $P(x+y) = x$ and $Q(x+y) = y$ for all $x \in M$ and all $y \in N$. Then P and Q are well-defined linear operators on $M + N$. (You need not prove this. It is elementary.)

(a) Suppose in addition that E is a normed linear space. Prove that P is continuous if and only if Q is continuous.

(b) Now suppose in addition that E is a Banach space and that M and N are closed. Prove that P and Q are continuous if and only if $M + N$ is closed.

5. Let K be \mathbb{R} or \mathbb{C}. Let E be a normed linear space over K, let E^* be the Banach space of continuous linear functionals on E, and let E^{**} be the Banach space of continuous linear functionals on E^*.

(a) For each $x \in E$, define $L_x: E^* \to K$ by $L_x(\varphi) = \varphi(x)$ and prove that $L_x \in E^{**}$ and $\|L_x\| = \|x\|$.

(b) Let $A \subseteq E$. Suppose that for each $\varphi \in E^*$, the set $\varphi[A]$ is bounded in K. Prove that A is norm-bounded in E.

6. Let X be a locally compact Hausdorff space and let $C_0(X)$ be the space of complex-valued continuous functions f on X such that f tends to zero at infinity. Let f be an element of $C_0(X)$ and let (f_n) be a sequence in $C_0(X)$. Prove that $f_n \to f$ weakly in $C_0(X)$ if and only if (f_n) is uniformly bounded and $f_n \to f$ pointwise. (For part of the forward implication, you may use the result of one of the parts of an earlier problem.)

3 The fact that E^* is a Banach space and not just a normed linear space follows from the fact that the scalar field K is complete as a metric space. You may use the fact that E^* is a Banach space without proof.