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Abstract

The Ax-Grothendieck theorem, proven in the 1960s independently
by Ax and Grothendieck, states that any injective polynomial from n-
dimensional complex space into itself must also be surjective. We will
prove this theorem using algebraic techniques following Tao’s exposition,
and discuss alternate proofs using tools from complex analysis and model
theory.

Introduction

We say that P : Cn → Cn is a polynomial if

P (x1, . . . , xn) = (P1(x1, . . . , xn)), . . . , Pn(x1, . . . , xn))

where each Pi ∈ C[x1, . . . , xn]. Note that this means the individual maps in one
coordinate are polynomials in n variables, so that P is really a collection of n
polynomials in C[x1, . . . , xn]. The Ax-Grothendieck theorem states that if P is
an injective function, then it must also be surjective. This seems like a lot of
information to keep track of and index properly, but the key to the proof of this
theorem is that the information required throughout is finite.

In the case of n = 1, the statement of the theorem is easily verified.

Proposition 1. If P : C→ C is an injective polynomial, then P is surjective.

Proof. If P is injective, then it is not constant. Thus for any z0 ∈ C, we
have P (z) − z0 is a nonconstant polynomial. By the Fundamental Theorem of
Algebra, this polynomial has a root, so P (z) − z0 = 0 for some z ∈ C. Hence
P (z) is surjective. �

In light of this proof, we may view the Ax-Grothendieck theorem as an extension
of the Fundamental Theorem of Algebra in some sense. Although it may seem
that injectivity was a stronger hypothesis than appeared in the proof, it will be
used in a crucial way in the general case.
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The interesting thing about this theorem is that it involves a “reduction to the
finite case,” i.e. the proof of the theorem uses the following simple fact that we
record for completeness.

Proposition 2. If F is a finite field and P : Fn → Fn is injective, then it is
surjective.

Proof. This is a set-theoretic statement having nothing to do with fields and
polynomials! �

Notation. As an abuse of notation, we may sometimes write P (x1, . . . , xn) ∈
F [x1, . . . , xn] as P (~x) and P (x1, . . . , xn, y1, . . . , yn) ∈ F [x1, . . . , xn, y1, . . . , yn]
as P (~x, ~y).

The Proof of the Cn Case

We follow Tao’s exposition from [9]. First, we need an important result from
algebra.

Theorem 1. (Hilbert’s Nullstellensatz.) Let F be an algebraically closed field.
Then if f ∈ F [x1, . . . , xn] vanishes at all points for which {gi} ∈ F [x1, . . . , xn]
vanish then there exist Qi ∈ F [x1, . . . , xn] and r ≥ 1 such that

∑
giQi = fr.

For a proof of this theorem, see any standard reference on algebra. This theorem
can be stated in a variety of different forms, but we will only have use for the
one stated above. The Nullstellensatz allows us to translate the properties of
injectivity and surjectivity of polynomials into algebraic statements with a finite
amount of data, which is the main idea in the proof.

Lemma 1. A polynomial P : Fn → Fn where F is algebraically closed with
P = (P1, . . . , Pn) is injective if and only if there exist Qi,j ∈ F [x1, . . . , xn, y1, . . . , yn]
and rj ≥ 1 such that

∑n
i=1(Pi(~x) − Pi(~y))Qi,j(~x, ~y) = (xj − yj)

rj for all
1 ≤ j ≤ n.

Proof. If an identity as above holds, then clearly Pi(~x) − Pi(~y) = 0 for all i
implies xj − yj = 0 for all j, i.e. ~x− ~y = 0, so the identity implies injectivity.

For the converse, we need the Nullstellensatz. Suppose P is injective. Then this
means if Pi(~x)−Pi(~y) = 0 for all i simultaneously, then ~x−~y = 0 or xj−yj = 0
for all j. Fix j, and consider the hypotheses of Theorem 1. By injectivity, the
polynomial xj−yj vanishes at the points for which the collection {Pi(~x)−Pi(~y)}
in A := F [x1, . . . , xn, y1, . . . , yn] vanish. Hence the Nullstellensatz furnishes
polynomials Qi,j ∈ A and rj ≥ 1 such that

∑n
i,j=1(Pi(~x) − Pi(~y))Qi,j(~x, ~y) =

(xj − yj)
rj . �

Similarly, we express lack of surjectivity using polynomial equations.
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Lemma 2. A polynomial P : Fn → Fn where F is algebraically closed with
P = (P1, . . . , Pn) is not surjective if and only if there exists a z0 ∈ Fn and
polynomial R ∈ F such that (P (~x)− z0)R(~x) = 1.

Proof. If the last equation holds, then P (~x) 6= z0 for all ~x ∈ Fn, so P is
not surjective. Conversely, if P is not surjective, then there exists a z0 ∈ Fn

for which P (~x) − z0 6= 0 for any ~x ∈ Fn. In this case the hypotheses of the
Nullstellensatz hold vacuously for the constant polynomial 1, so there exists an
R(~x) ∈ F [x1, . . . , xn] for which (P (~x)− z0)R(~x) = 1. �

An important observation to make is that one of the direction for both lemmas
was easier to prove, namely existence of a certain type of polynomial relation
implies either injectivity or lack of surjectivity. In fact, the Nullstellensatz was
not used at all in this case, so these implications hold over any field, not just
those which are algebraically closed. This is crucial for the proof of the theorem.

Theorem 2. If P : Cn → Cn is an injective polynomial map, then P is
surjective.

Proof. Suppose P is injective but not surjective. Then we may form the collec-
tion of polynomials from the two lemmas: {Qi,s, R, z0} and take the collection
C of their coefficients. This is a finite subset of C. Consider Z[C], the subring
of C generated by Z and C. Let m be a maximal ideal. Then (prove as an
exercise) Z[C]/m is a finite field. The reductions of the polynomial equations
created using Lemmas 1 and 2 hold over these finite fields, so by our remark
above, this implies that the reduction P mapping the finite field Z[C]/m to itself
(Ex: Why does this work?) is injective but not surjective, a contradiction. �

Extensions of the Theorem

Rudin gave a proof of Theorem 2 using complex analysis which yields the
stronger result that P−1 is itself a polynomial (see [9] for details). Why use
such generality when the Nullstellensatz can be substituted with complex anal-
ysis? One motivation is that our proof did not use anything special about C
other than the fact that it was algebraically closed. After realizing this, the
next result should not seem too surprising.

Theorem 3. Let K be the algebraic closure of a finite field k with characteristic
p. Then if P : Kn → Kn is an injective polynomial, it is surjective.

Proof. Suppose P is injective but not surjective. Lemmas 1 and 2 were proven
for any algebraically closed field, so they are valid for P in this case. However,
the reduction to the finite case is much simpler in this setting. Let C be the set
of coefficients as defined in the previous proof, and consider the subfield of K
generated by k and C. Then this is a finitely generated algebraic (!) extension
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of k, hence this subfield is also finite. Thus the reduction of the polynomial
equations from the lemmas descends to polynomial equations over a finite field
which imply that P is an injective map of a finite field to itself which is not
surjective. �

Other ways to prove the theorem include using model theory, which would
require much more time than alloted to discuss. For basic approaches, see for
example [3] or [7]. One intuitive reason as to why finite fields and fields of
characteristic p can give us information about fields of characteristic 0 is the
following: one of the defining properties of a field of characteristic 0 is that the
infinite set of axioms {n · 1 6= 0 : n ∈ N} hold. If some property of a field
with characteristic 0 can be deduced by a proof involving only finitely many
statements, then it should not require the usage of all of these infinitely many
axioms, i.e. the statements really only need the fact that for finitely many
n ∈ N, n · 1 6= 0. This is why certain statements about C “should” also be
true for all fields of sufficiently large characteristic and vice versa. This vague
concept can be made precise and rigorous using model theory and mathematical
logic.

As a closing remark about the theorem itself, we mention that the theorem can
be generalized (and in fact is often stated) to injective morphisms of algebraic
varieties over algebraically closed fields. See [5] for more details.

Applications

Although the statement of the Ax-Grothendieck theorem is already impressive
in all of its forms, there is an interesting application to the study of cellular
automata. A cellular automaton is (roughly) a grid in which every square
occupies a specific state, and there are some rules for the configuration to pass
from one state to another. A classic example of this is Conway’s Game of
Life. A state in a cellular automaton is called a “Garden of Eden” state if
it is impossible to reach that state from a previous one following the given
rules. A pair of twins is a pair of configurations for which interchanging them
in any sequence of applications of the rules do not change the sequence for any
future states. The Garden of Eden theorem states that a cellular automaton in
Euclidean space has a Garden of Eden state if and only if it has twins. This
theorem can be generalized to cellular automata over elements of an amenable
group, but this proof uses the Ax-Grothendieck theorem. For details on this
subject, see [2], [4], and [6].

For other theorems proven similarly to the Ax-Grothendieck theorem (using
finite fields/characteristic p to prove the characteristic 0 case), see [8].
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