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ABSTRACT. The notion of a Baer ring, introduced by Kaplansky, has been extended to that
of a Baer module using the endomorphism ring of a module in recent years. There do exist
some results in the literature on Baer ring hulls of given rings. In contrast, the study of a Baer
module hull of a given module remains wide open. In this paper we initiate this study. For a
given module M, a Baer module hull, B(M), is the smallest Baer overmodule contained in a
fixed injective hull E(M) of M.

For a certain class of modules N over a commutative noetherian domain, we characterize
all essential overmodules of N which are Baer. As a consequence, it is shown that Baer module
hulls exist for such modules over a Dedekind domain. A precise description of such hulls is
obtained. It is proved that a finitely generated module N over a Dedekind domain has a Baer
module hull if and only if the torsion submodule ¢(N) of N is semisimple. Further, in this case,
the Baer module hull of N is explicitly described.

As applications, various properties and examples of Baer hulls are exhibited. It is shown
that if N1, N are two modules with Baer hulls, N1 & Na may not have a Baer hull. On the
other hand, the Baer module hull of M = Z, & Z (p a prime integer) is precisely given by
B(M) = Zp & Z[1/p]. Tt is shown that infinitely generated modules over a Dedekind domain
may not have Baer hulls.

1. Introduction

Shoda in 1952 [31] and Eckmann and Schopf in 1953 [7] independently proved that for
every module My over an arbitrary ring R there exists a unique (up to isomorphism over M)
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minimal injective overmodule E(M) called its injective hull. The study of a more general
type of “hull” of M or the unique smallest essential overmodule of M in a fixed injective hull
E(M) of M having some special property has been of interest since then. This includes, for
a given module M, the study of hulls of M having properties which generalize injectivity
(for example, quasi-injective, continuous, quasi-continuous hulls) or properties which are
otherwise connected to injectivity. An important focus of investigations has been to prove
the existence and explicit descriptions of various types of module hulls.

Recall that a module M is called quasi-injective if f(M) C M for each f € End(E(M)).
Among other well-known generalizations of injectivity, the study of the continuous, quasi-
continuous, and extending properties has been extensive in the literature (see for example
[6], [18], [19], [20], and [23]). A module M is said to be extending if, for each V' < M, there
exists a direct summand W <® M such that V <°* W. And an extending module M is
called quasi-continuous if for all direct summands M; and My of M with M; N My = 0,
My & M is also a direct summand of M. Furthermore, an extending module M is said to
be a continuous if every submodule N of M which is isomorphic to a direct summand is
also a direct summand of M. The well-known hierarchy of these properties is as follows:

injective = quasi-injective = continuous = quasi-continuous = extending
(while none of the reverse implications hold).

For a given module M, let H = Endg(E(M)) denote the endomorphism ring of its
injective hull E(M). Then by Johnson and Wong [11], the unique quasi-injective hull of
the module M is precisely HM. Goel and Jain [9] showed that there always exists a
unique quasi-continuous hull of every module within a fixed injective hull E(M). The
quasi-continuous hull of M is exactly given by QM , where Q is the subring generated by
all idempotents of H = End(E(M)). In contrast to this, it was shown by Miiller and Rizvi
in [19] that continuous module hulls do not always exist in general. However, they did
show the existence of continuous hulls of certain classes of modules over a commutative ring
(such as nonsingular cyclic ones) and provided a description of these continuous hulls (see
[19, Theorem 8]). Similarly, it is also known that extending module hulls do not always
exist (for example, see [4, Example 8.4.13, p.319]). Closely linked to these notions, are the
notions of Baer and Rickart modules. In particular, every nonsingular extending module is
a Baer module while the converse holds under a certain dual condition (see Lemma 3.5). In
this paper, we introduce and study Baer (module) hulls of certain modules over a Dedekind
domain.

Kaplansky introduced the notions of Baer and Rickart rings in [13]. He and many others
obtained a number of interesting results on these two classes of rings which have their roots
in Functional Analysis (for example, [1], [2], [4], [5], [10], [13], and [17]). More recently,
the notions of a Baer ring and a Rickart ring were extended to analogous module theoretic
notions using the endomorphism ring S of the module by Rizvi, Roman, and Lee ([24] and
[15]). A module M is called a Baer module if, for any Ng < Mpg, there exists e = e € S such
that £s(N) = Se, where S = End(Mg) and (g(N) = {f € S| f(IN) = 0}. Equivalently, a
module M is Baer if and only if for any left ideal I of S, rps(I) = fM with f2 = f € S,
where rp(I) = {m € M | Im = 0}.

Recall from [4, Chapter 8] that the Baer ring hull of a ring R is the smallest Baer right
essential overring of R in E(Rg). While some work has been done on the existence of a
quasi-Baer ring hull of a ring R for some special classes of rings ([2], [3], and [4]), there is
almost nothing known about the existence or description of Baer module hulls. To the best of



our knowledge, the only explicit results about Baer ring hulls in existing literature have been
due to Mewborn, Oshiro, and Hirano, Hongan and Ohori. However, these results about ring
hulls are only for the case of commutative semiprime rings or of reduced right Utumi rings.
Further, in each of these cases the Baer ring hull is not distinct from the quasi-Baer ring
hull of R. Mewborn [17, Proposition 2.5, showed the existence of a unique Baer ring hull of
a commutative semiprime ring R and showed that it is exactly the subring of the maximal
ring of quotients Q(R) generated by R and the idempotents of Q(R). That is, the Baer
ring hull of a commutative semiprime ring is given by RB(Q(R)), where B(Q(R)) is the set
of all (central) idempotents of Q(R). As a direct consequence, Oshiro [21, Proposition 3.3]
showed that the Baer ring hull of a commutative von Neumann regular ring is a continuous
regular ring. Oshiro [22] then extended his work and constructed the Baer ring hull of a
commutative von Neumann regular ring by using sheaf representations. Hirano, Hongan,
and Ohori [10,Theorem 4] proved the existence of a Baer ring hull for a reduced right Utumi
ring. These results on the existence of Baer ring hulls of a commutative semiprime ring or
a reduced Utumi ring were recently extended and a unified result was obtained for the case
of arbitrary semiprime rings by Birkenemier, Park, and Rizvi [2, Theorem 3.3].

In contrast to the ring hull of a given ring R, the study of a module hull of a given module
Mg, appears to be more natural because the injective hull E(Mg) as an overmodule of Mp
always exists, while E(Rg) does not have a ring structure in general. So the ring hulls of
R are more useful when these are either contained in the maximal right ring of quotients
Q(R) of R or the injective hull E(Rpg) is endowed with a compatible ring structure (see [4,
Chapter 7]).

For a given module M, the smallest Baer overmodule of M in E(M) is called the Baer
module hull (in short, the Baer hull) of M and we denote it by B(M). One of the difficulties
in dealing with the Baer module hull of a module My, is the interplay of the scalar multipli-
cation of M with R on one side of M and with the endomorphism ring S = End(Mg) on the
other side of M. Such an overmodule of M not only has to satisfy the conditions for being
Baer but also being the smallest such overmodule of M to be a hull. The Baer property of
the hull thus necessitates a consideration of endomorphism rings of all overmodules of M in
E(M) before we can locate the smallest Baer overmodule of M.

In this paper, we initiate the study of the Baer module hull of a given module Mgz. In
particular, for a module M and a fixed injective hull E(M) of M we study the existence
of the Baer module hull of M of certain types of modules over a Dedekind domain. It is
shown that a Baer hull, may not always exist for infinitely generated modules over Dedekind
domains. We obtain explicit description of Baer hulls of a certain class of modules over a
Dedekind domain.

From [24] it is known that M = Z, & Z (p a prime integer) is not a Baer Z-module,
while Z,, and Z are. We first characterize when intermediate modules between an analogous
direct sum as a module over a commutative noetherian domain and its injective hull are
Baer. This result is then used to explicitly construct and characterize the Baer hull of
an module N over a Dedekind domain R, when Anng(t(N)) # 0 and N/t(N) is finitely
generated, where t(IN) denotes the torsion submodule of N. Consequently, we prove that
every finitely generated module over a Dedekind domain, has a unique Baer hull precisely
when its torsion submodule is semisimple. This unique hull is explicitly described.

All rings are assumed to have identity and all modules are assumed to be unitary. For right
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R-modules Mg and N, we use Hom(Mg, Ng), Homg(M, N), or Hom(M, N) to denote the
set of all R-module homomorphisms from Mp to Ni. Likewise, End(Mg), Endr(M), or
End(M) denote the endomorphism ring of an R-module M. For an R-module homomor-
phism f € Homp(M, N), Ker(f) is used for the kernel of f.

We use E(Mpg) or E(M) to denote an injective hull of a module Mg. For a module M,
L <M, N <® M, and U <% M denote that L is a submodule of M, N is an essential
submodule of M, and U is a direct summand of M, respectively. If M is an R-module,
Anng(M) stands for the annihilator of M in R.

For a module M and a set A, let M®) denote the direct sum of |A| copies of M, where
|A| is the cardinality of A. When A is finite with |A| = n, then M) stands for M),
Mat,,(R) denotes the n X n matrix ring over a ring R. The symbols Q, Z, and Z,(n > 1)
stand for the field of rational numbers, the ring of integers, and the ring of integers modulo
n, respectively.

As mentioned, we will use the term Baer hull for Baer module hull in this paper.

2. Baer Module Hulls

In [24], it was shown that a finitely generated module N, over a commutative PID, is a
Baer module if and only if N is either semisimple or torsion-free. In particular, Z, ® Z is
not a Baer Z-module, where p is a prime integer. Motivated by the preceding result and
example, for a given finitely generated module N over a commutative domain R, it is of
interest to study intermediate Baer modules between N and F(N), and investigate possible
existence of the Baer hull of V. The investigations on Baer hulls are even more relevant since
nothing is known about the Baer hulls. The only information that exists is that of a couple
of special cases of Baer ring hulls, which in fact, were shown to be precisely quasi-Baer ring
hulls [4] as discussed earlier.

Let G =27 b Sz k2 - D7 pin @ 7™, where p1,pa,...,pn are prime integers (not

necessarily dlstlnct) and ki, ko, .. .,kn, and m are nonnegative integers. If one of k;s is
greater than 1, then there is no intermediate Baer Z-module between G and E(G7). In fact,
say V is an intermediate abelian group between G and E(G7), and assume k; > 2. Then
by Kulikov [29, 5.2.10, p.98], either Z i with £1 > Ky or Zys is a direct summand of V.

Because neither Z ptr 1or Lpze s a Baer Z-module, V is not a Baer Z-module (see Lemma

2.4(ii)). So it is absurd to study the Baer hull for G when one of kq, ko, ..., k, is greater
than 1. Thus an investigation of Baer hulls of finitely generated abelian groups G makes
sense only when the torsion subgroup of G is a semisimple Z-module.

In general, if R is a Dedekind domain and N is a finitely generated R-module, we need to
assume that ¢t(N) is semisimple for investigation of intermediate Baer modules between N
and E(N), where t(N) is the torsion submodule of N (cf. Theorems 2.6 and 2.13). In this
case, t(N)@ E(N/t(N)) is the ‘largest’ intermediate Baer module between N and E(N) (see
Theorem 2.6). Hence it is of interest to investigate the existence of the ‘smallest’ Baer in-
termediate module between N and E(N) (i.e., Baer hull of N). We explicitly construct and
characterize the Baer hull of a module N over a Dedekind domain R when Anng(t(N)) # 0
and N/t(N) is finitely generated (thus, N = ¢(N) @ N/¢(N)). In particular, it is shown
that if M is a module over a Dedekind domain R whose annihilator in R is nonzero, then
M @ (@, K;) has a Baer hull if and only if M is semisimple, where {K; | 1 < i < m} are
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fractional ideals of R (Theorem 2.13). As a consequence, in this paper every finitely gener-
ated module N over a Dedekind domain has a Baer hull precisely when ¢(N) is semismple
(Theorem 2.18). The Baer module hull is explicitly described in these cases. Some applica-
tion of our results and explicit examples that illustrate and delimit our results are provided
in Section 3.

Among explicit constructions of Baer hulls, for given nonempty sets I'y,I's,I'3 and a
positive integer m, we show in Example 3.2 that the Baer hull of ng @ng) @Zg?’) S YALD)
is precisely given by Z(er) @Zgz) @Zgg) ®Z[1/30](™) . Thus M = Z,&Z (p a prime integer)
has a unique Baer hull given by V' = Z, ®Z[1/p]. We note that M and V are not extending.

In contrast, W = Z,» is the extending (quasi-injective) hull of itself, but W has no Baer
hull.

We start with the following definition.

Definition 2.1. ([24, Definition 2.2]) A right R-module M is called a Baer module if, for
any Nr < Mg, there exists ¢? = e € S such that £5(N) = Se, where S = End(Mp) and
ls(N)={f €S| f(N)=0}. Thus a right R-module M is Baer if and only if for any left
ideal I of S, raf(I) = fM with f2 = f € S, where rp(I) = {m € M | Im = 0}.

We recall that a ring R is called a Baer ring if the right annihilator of any nonempty
subset of R is generated, as a right ideal, by an idempotent of R. Thus a ring R is a Baer
ring if and only if Rg is a Baer module.

Definition 2.2. ([26, Definition 2.3]) Let Mz be an R-module and S = Endg(M). Then
Mp is called quasi-retractable if Homp(M,rp(I)) # 0 for every left ideal I of S with
ra(I) # 0 (or, equivalently, if rg(I) # 0 for every left ideal I with rp,(I) # 0).

Lemma 2.3. ([26, Theorem 2.5]) A module Mg is Baer if and only if Endg(M) is a Baer
ring and Mp is quasi-retractable.

A module M is said to have the strong summand intersection property (SSIP) if the
intersection of any family of direct summands of M is a direct summand.

Lemma 2.4. (i) ([24, Proposition 2.2]) A module M is Baer if and only if Ker(f) <® M
for each f € End(M) and M has the SSIP.
(ii) ([24, Theorem 2.17]) Any direct summand of a Baer module is a Baer module.

Say M and N are R-modules. Then M is said to be N-injective if, for any W < N and
f € Hom(W, M), there exists ¢ € Hom(N, M) such that ¢|y = f. Recall from [15] that M
is called N-Rickart if Ker(f) <® M for each f € Hom(M, N). Also recall from [26] that M
and N are said to be relatively Rickart if M is N-Rickart and N is M-Rickart.

The following lemma is [26, Theorem 3.6] (also see [4, Theorem 4.2.17, p.105)).

Lemma 2.5. Let {M; | 1 <i < n} be a finite set of Baer modules. Assume that M, and
M; are relatively Rickart for ¢ # j, and M; is Mj-injective for ¢ < j. Then @}, M; is a
Baer module.

Let R be a commutative noetherian domain and F be its field of fractions. Assume
that N = Mpr ® (®;eaK;), where M is semisimple with a finite number of homogeneous
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components, and {K;};ca is a set of nonzero submodules of F. Our first focus is to study
intermediate modules between N and E(N) which happen to be Baer modules.

Theorem 2.6. Let R be a commutative noetherian domain, which is not a field. Assume
that M is a nonzero semisimple R-module with only a finite number of homogeneous com-
ponents, and {K; | ¢ € A} is a nonempty set of nonzero submodules of Fr, where F is the
field of fractions of R. Let Vi be an essential extension of Mg @ (®;eaK;)r. Then the
following are equivalent.

(i) V is a Baer module.

(ii) (1) V.= M @ W for some Baer essential extension W of (®;ea K;)r-

(2) Homgr(W, M) = 0.

Proof. (i)=-(ii) We assume that V' is a Baer module. Let {H | 1 < k < s} be the set of
all homogeneous components of M. Then M = @®;_, Hj,. For each k, 1 < k < s, there exists
a nonempty set 'y such that Hy = ©aer, M(1,q), where each M ) is a simple module.

For k, 1 <k <'s, we put P, = Anng(My o)), where o € 'y, and recall that Anng(—)
denotes the annihilator of a module in R. Then I := N;_; P, = Anng(M). So I # 0
because each P, # 0. As R is noetherian, I = a1 R + - -- + a R, for some ay,...,a,, € I.
For i, 1 <1i <m, define p,, : V=V by ¢,, (v) = va;, where v € V. Then ¢,, € Endg(V).

Since V is a Baer module, Lemma 2.4(i) yields that Ker(p,,) = ¢y (a;R) is a direct
summand of V|, for each i, where ¢/ (—) is the annihilator in V. So ¢y (I) = N, ¢y (a;R) is
a direct summand of V' by Lemma 2.4(i). Hence V = {y (1) @ W for some W < V. As V is
a Baer module, W is a Baer module by Lemma 2.4(ii).

We claim that £y (I) = M. For this, note that M C £y(I). Let Y = E(M) ® E(RW).
As R is noetherian, E(R%\)) = BE(Rr)™), and so E(©icaKir) = ®ieaE(K;r) = E(Rp)™W).
Therefore

V=tyI)aW <Y = E(M)® ERg)™ = E(M) & (DierB(K; ).

Let ¢(Y) be the torsion submodule of Y. Say 0 # = € E(M). Then there exists r € R
such that 0 # xr € M C ¢y (I) since M <®° E(M). Take 0 # b € I. Then zrb = 0 with
0#rbe R. Thus E(M) Ct(Y).

Next, let y € t(Y). Then y = u+v € E(M) @ E(Rg)™, where p € E(M) and
v € E(RR)™. So there exists 0 # ¢ € R such that 0 = yc = pc + ve. Hence ve = 0. Since
E(Rp) is the field of fractions of R, we see that v = 0. Therefore y = p € E(M). Thus
t(Y) C E(M). Consequently, t(Y) = E(M).

Say v € £y (I). Then v is a torsion element in V', so it is a torsion element of Y. Thus
v e t(Y)=E(M). Since R is noetherian,

E(M) = (®acr, E(M(1,0))) @ (Bper, E(M(2,5))) @ -+ @ (Drer, E(M(s ) -

So there exist My, ..., M, € {M,q), M@gy,...,Mq) |a€l, €Ty, ...,y eI} such
that v € E(My) @ --- @ E(M,). Putv=y1+---+y, € E(M1) ® --- ® E(M,,), where
yi € E(M;) for i, 1 <i < n. For any a € I, we have that 0 = va = y1a + - - - + ynpa, hence
y1a=0,...,y,a=0. Since yya =0 for all @ € I, y; I = 0. Similarly, yoI =0,...,y,I = 0.

Now My C y1R+ M; C E(M,), and hence y1 R + M; is a uniform module. Because
(y1R + My)I = 0, we see that y3 R + My is an R/I-module induced by the R-module
structure of y3 R + M;. Hence y; R + M; is a uniform R/I-module.



Further, since I = N;_; P; and P; are distinct maximal ideals of R,
R/IZR/P,@---® R/Ps

by the Chinese Remainder Theorem. So R/I is a finite direct sum of fields R/P; (hence
R/I is a semisimple artinian ring). Therefore y1 R + M; is a simple R/I-module because
y1 R+ My is uniform as an R/I-module. Since M1 = 0, M; is also an R/I-module which
is induced from the R-module structure of M;. Thus M7 = y1 R + M; because y1 R + M is
a simple R/I-module. Hence y; € M.

Similarly, yo € Ms,...,y, € M,. Thereby v =y1 +---+y, € M1 & --- & M,, and thus
v € M. Hence ¢y (I) C M. Therefore ¢y (I) =M. SoV =M W.

Next, we show that
(@ienKi)r < Wr < E(Rp)™.

For this, we first prove that W is torsion-free. Say w € W < E(M) ® E(Rg)™. Then
W= Ty + Yo € BE(M)® E(Rp)™ such that z,, € E(M) and y, € E(Rr)™. Let
f:Wg — E(RR)™ be defined by f(w) = y,, for w € W. Since MNW = 0, E(M)NW = 0.
So f is an R-module monomorphism. Thus W is torsion-free.

Now we take 0 # a € I. Because M @ (©;enK;)) € M & W C E(M) ® E(Rg)™, it
follows that (M @ (®ieaK;))a € (M & W)a, and thus (Bi;eaK;)a € Wa since by (I) = M.
First for ((®ieak;)a)r <= (Wa)g, let 0 # wa € Wa. Then, as M @ (®epK;) <= M OW
and wa € Wa C W, there is b € R such that 0 # wab € M & (B;en K;).

Say wab =u+n € M O (B;eaK;) with u € M and n € ®;ep K;. Note that 0 # wab € W,
W is torsion-free, and a # 0. Hence 0 # (wab)a = na € (®;epk;)a. Therefore we have
(DieaKs)a)r <= (Wa)rg.

We notice that 0 # ((B;eaKi)a)r < (BieaKi)r and 0 # (Wa)g < Wg, obviously

(®ieaKi)a)r <= (@ieaK;)r and (Wa)g < Wg. Hence it follows that
E(Rp)™ = E[(®ienKi)r] = E[(@ieaKi)a)r] = E[(Wa)g] = E(WR).

Therefore W < E(Rg)™.

To verify (®;eaKi)r < Whg, let £ € @ieaK; C M ® (PiepK;) € M & W. Now we write
E=74+weMeW withte M and w € W. Take 0 #2 a € I. Then a = Ta + wa = wa
because M = ¢y (I). Therefore (£ —w)a = 0.

Note that ¢ € @;enK; < E(Rp)™, w € W < E(Rg)™, and E(RpR) is the field of
fractions of R. Thus we obtain £ —w = 0, and hence £ = w € W. Therefore @;ep K; < W.
As a consequence, (®;cnK;) <W < E(Rp)WM) = E[(©iea Ky R)-

Let N € {Mqu,a),Mapgy,....Muq) | @ € Ty, 8 € T'y,..., v € T's}. Assume on the
contrary that Homp(W, N) # 0. Take 0 # f € Hompg (W, N). Since N is simple, f is onto.
Let ¢ : N®W — N @& W be defined by é(n,w) = (f(w),0) for (n,w) € N @& W. Then
Ker(¢p) = N@Ker(f) CNOW.

As Ker(f) # W, Ker(¢p) = N@Ker(f) S N®W. Since NoW <V =MaW and V
is Baer, N @ W is Baer by Lemma 2.4(ii). Thus N @ W = Ker(¢) @ U = N @ Ker(f) @ U
for some U < N o W.

Define h : W — Ker(f) @ U by h(w) = z + u, where w € W and w = n+z+ u
with n € N,z € Ker(f), and v € U. Then h is an R-module isomorphism. Next, we let
m:Ker(f)®U — U be n(x + u) = u, where x € Ker(f) and u € U. Put g =moh.



Say w € Ker(g) withw=n+x+u € N & Ker(f) ® U, where n € N, x € Ker(f), and
u € U. Then

O0=n(h(w))=n(x+u)=u, so w=n+z+u=n-+z.

Hence w—x =n € WNN =0, thus w = 2 € Ker(f). Conversely, suppose that = € Ker(f).
Then g(z) = n(h(z)) = w(x) = 0, so x € Ker(g). Therefore Ker(f) = Ker(g).

Since g : W — U is onto, W/Ker(g) = U. On the other hand, W/Ker(f) = N because
f # 0 is onto. Therefore

N = W/Ker(f) = W/Ker(g) = U.

Note that UI =0 as NI = 0. Recall that h : W — Ker(f) @ U is an R-module isomorphism.
So W 2 Ker(f) @ U. Thus U is torsion-free, hence U = 0, and so W/Ker(f) = U = 0.
Therefore W = Ker(f), a contradiction. Thus Homg(W, N) = 0.

Consequently, for any N € {M(1,4), M2.8),..., M5y | @« € T1, B € Tg,..., v € T},
we have that Homg(W,N) = 0. For k,1 < k < s, we note by [27, Theorem 2.6, p.31]
that (Homg(W, [[,er, Mk, a))s +) = (Iaer, Homr(W, M(x.q)), +), and by the preceding
argument Homp(W, M4, o)) = 0 for each a € I'y. Therefore Homp(W, [[,er, M(k.a)) = 0.
Because Homp (W, Hy) = Hompg(W, @aer, Mk, o)) € Homp(W, [[,cr, M(k.a)), we obtain
Homp(W, Hy) = 0 for each k, 1 < k < s. Hence Homgr(W, M) = Homg(W,®;_,Hx) =0
from [27, Theorem 2.6, p.31]. This proves that (ii) holds.

(11):>(1) For any N € {M(l,a)aM(2,,8)7~-~7M(s,'y) | aecly,fely....,v € FS}, we
can check that Homgz(N,W) = 0. Indeed, say N = M(; o) = R/P; as R-modules. Let
h € Hompg(R/P;,W) and say h(1 4+ P;) = w € W. Take 0 # a € I. Then we see that

0=h(a+ Py) =h(l+ P))a=wa.

Since W is torsion-free, w = 0 and thus h = 0. Therefore Homp(R/Py,W) = 0, hence
Homp(N,W) = 0. So Homp(M,W) = 0 from [27, Theorem 2.4, p.30]. By hypothesis,
Hompg(W, M) = 0. Thus M and W are relatively Rickart.

Now W is a Baer module by assumption. Because M is semisimple, M is a Baer module
and W is M-injective. Therefore V.= M @ W is a Baer module by Lemma 2.5. ]

Recall from [8, p.112] that a module M is said to be S-injective if M) is injective for
any set A. By [8, Exercise 20.4C(d), pp.114-115], a ring R is right Goldie if and only if
E(Rp) is X-injective.

Corollary 2.7. Let R be a commutative domain, which is not a field. Let M be a nonzero
semisimple artinian R-module. Say {K; | i € A} is a nonempty set of nonzero submodules
of Fr, where F is the field of fractions of R. Assume that Vy is an essential extension of
Mg @ (®ieaK;)r. Then the following are equivalent.
(i) V is a Baer module.
(ii) (1) V.= M @ W for some Baer essential extension W of (®;er K;)r-
(2) Homgr(W, M) = 0.

Proof. (1i)=-(ii) Assume that V is a Baer module. Let M = &!' ; M;, where each M; is a
simple module. Let P; = Anng(M;) and I = NP, P,. Then I = Anng(M) and I # 0. For
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each a € I, we define ¢, : V.= V by ¢,(v) = va for v € V. Then ¢, € Endg(V). Since
V is a Baer module, Ker(¢,) <® V from Lemma 2.4(i). Hence £y (I) = NgerKer(p,) <@V
by the SSIP (see Lemma 2.4(i)), and thus V = ¢y (1) @ W for some W < V. Now as in
the proof of Theorem 2.6, ¢y (I) = M. Therefore we obtain V = M & W for some W < V.
Note that E(M) = &1 E(M;).

As E(RRr) = F is a field, so R is right Goldie and thus E(Rpg) is X-injective. Hence
E(Rr)™) is injective. Since (®;crK;)r < E(RR)™ and E(Rr)™W) is injective, we see
that B(®ieaKig) = E(Rr)™. The remaining part of the proof follows from the proof of
Theorem 2.6.

(ii)=(i) The proof is similar to the proof of (ii)< (i) in the proof of Theorem 2.6. O

Let R be a commutative domain with the field of fractions F'. A submodule K of Fg is
called a fractional ideal of R if rK C R for some 0 # r € R. Thus Kg = (rK)g and 7K is
an ideal of R. We note that any ideal of R is a fractional ideal.

For a fractional ideal K of R, we put K ! = {q € F' | ¢K C R}, which is called the inverse
of K. We say that a fractional ideal K is invertible if K K~' = R. Tt is well-known that for
a nonzero ideal I of a commutative domain R, I is projective if and only if II-! = R. In
this case, Ir is finitely generated and I~! is a fractional ideal of R.

Recall that a commutative domain R is a Dedekind domain if and only if R is hereditary.
Thus for each nonzero ideal I of a Dedekind domain R, it follows that 71—! = R because I
is projective. Furthermore, every nonzero fractional ideal of a Dedekind domain is invertible.

We note that a Dedekind domain is noetherian because every ideal is projective (hence
every ideal is finitely generated) (see [14, p.37] and [30, Chapter 6] for more details on
Dedekind domains).

Assume that I is an invertible ideal of a commutative domain R. Then we let =2 =
I7'[=Y I3 =I17'T7'I~! and so on. For convenience, we put I° = R.

Lemma 2.8. Assume that R is a Dedekind domain. Then:
(i) For nonzero ideals I, Iy ..., I, of R, (I1Iy---1,)"* = I; - I;'I7
(ii) For a nonzero ideal I of R and a positive integer n, I=" = (I")~1.

Proof. (i) Let I and J be nonzero ideals of R. Then I.J is also a nonzero ideal of R.
Thus I, J, and I.J are invertible since R is a Dedekind domain. Say ¢ € (IJ)~!. Then
qlJ C R,so ql C J L Hence gII™' C J '™t AsII ' =R, gR C J~'I7! and thus
g€ J'I1. Conversely, let k € J~'I71'. Then k = z1y; +- - -+x¢ye, where zy,...,2, € J}
and y1,...,y¢ € I7Y. Thus kIJ = (x1y1 + -+ + xeye)[J C 2y Jyi ] + -+ + 2 Jyed C R, so
k€ (IJ)~'. Therefore (IJ)~* = J='I~'. Inductively, (I1Io---1,)"' = I;'-- I ' I L

ii) By (i), this is evident. O
(ii) By (i),

Lemma 2.9. Assume that R is a Dedekind domain and I is a nonzero ideal of R. Let
A=>",.,17" Then we have the following.
(i) A= R[q1,¢2,--.,qn), where1 = >""  r;q; forsomer; € [ andg; € I~ with1 <i < n.
(ii) A is a Dedekind domain.

Proof. (i) Let F be the field of fractions of R. Say I is a nonzero ideal of R. Then [ is
invertible, and thus I1-! = R. Hence there exist 1,72,...,7, € I and q1,¢2,...,qn, € I}
such that 1 = Y1 | r;q;. Further, > ;R C I='. Next, take ¢ € I'. Then ¢ C R.
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Because 1 = 2?21 r;q; and gr; € g C R for each 7, we obtain that

q= Q(Z rigi) = Zqz‘((ﬁ“i) € Z%‘R-
=1 i=1 i=1

Hence I71 C >i, ¢iR. Consequently, I !'= >i, ¢iR. Now we observe that

I2=1"1"=0 "R _¢R) = > R,
i=1 =1

ij=1

and so on. Therefore, A = Zzzo I = Rlq1,q2,- - -,qn) since I = R.

(ii) Note that A = Rlq1,4o,-..,qn] is a noetherian ring since R is noetherian. As R is
Dedekind (hence R is Priifer) and A is an intermediate ring between R and F', the domain
A is Priifer. Therefore A is a Dedekind domain because A is noetherian. O

For a ring R and a nonempty set A, we use CEFMy (R) to denote the A x A column finite
matrix ring over the ring R.

Lemma 2.10. Let R be a commutative domain with the field of fractions F. Assume
that A is an intermediate domain between R and F. Then A%\) is quasi-retractable for any
nonempty set A.

Proof. Assume that A is a nonempty set. We put M = A%\). Then it follows that S :=
Endg(M) = Endg(A™). We show that S = Enda(A™) = CFM,(A). For this, first note
that End 4 (AM) C S. Next, we let f € S. Assume on the contrary that f ¢ Enda(A@).
Then there exist y € A™) and ¢ € A such that f(yq) — f(y)q # 0.

Put ¢ = ac™!, where a,c € R and ¢ # 0. Since A®) is a torsion-free R-module, so

0# (fya) — f(y)a)e = f(yq)e — f(y)a = f(yqc) — f(ya) = f(ya) — f(ya) =0,

which is a contradiction. Therefore f € End4(A™)). Hence S = Enda(A™) = CFM, (A).

If |A| = 1, clearly Ap is quasi-retractable because Rp < Agr < Fr and A is an interme-
diate domain between R and F.

Next consider when |A| = 3. Our method for the case when |A| = 3 can be applied to
general case. We show that M = Ag) is quasi-retractable. For this, let I be a left ideal of
S = Mats(A). Say

q1
0#Fm= [q2| €rm(l)
a3

Let e;; be the matrix in S = Mats(A) with 1 in the (4, j)-position and 0 elsewhere. Put
0# s = qie11 + gaea1 + gzesr € Matz(A) = S.

Now take [fz]] € I. Then [fl]]m = 0. Hence fi1q1 + fi2q2 + figq:; = 0, for 1 S ) S 3.
So [fij]ls = 0 for all [f;;] € I, and thus 0 # s € rg(I). As a consequence, M = Ag’) is
quasi-retractable. O
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Definition 2.11. Let Mg be a module. We fix an injective hull E(Mg) of Mg. Let 9 be
a class of modules. We call, when it exists, a module Hgr the 9t hull of Mg if Hg is the
smallest extension of Mg in E(Mg) that belongs to 9. In particular, we denote the Baer
hull of a module M by B(M) when it exists (see also [4, Definition 8.4.1, p.310]).

Lemma 2.12. ([30, Theorem 6.11, p.171]) Let R be a Dedekind domain and M an R-
module with nonzero annihilator in R. Then there exists a unique family {P;, n;};er such
that:

(i) The P; are maximal ideals of R and these are only finitely many distinct ones.

(ii) {n; | i € T'} is a bounded family of positive integers.

(iii) M = @ier(R/P"") as R-modules.

Let R be a Dedekind domain and N an R-module. Say ¢(N) is the torsion submodule of
N. Suppose that N/¢(N) is finitely generated as an R-module. Since N/t(N) is torsion-free,
N/t(N) = (&L, K;) (as R-modules) for some fractional ideals K;,1 < j < m, of R from
[30, Theorem 6.16, p.177] (see also Lemma 2.16). So N/t(N) is projective, and hence we
have that N = ¢(N) @ N/t(N) 2 t(N) @ (&}, K;) as R-modules.

Our next result provides a complete characterization for the existence of the Baer hull of
a module N when N/t(N) is finitely generated and Anng(t(N)) # 0 (see Theorem 2.16).
Furthermore, we describe the Baer hull of N explicitly in this case.

Theorem 2.13. Let R be a Dedekind domain. Assume that M is an R-module with
nonzero annihilator in R, and {K1, Ka,...,K,,} is a finite set of nonzero fractional ideals
of R. Then the following are equivalent.

(i) Mg @ (&1, K;)r has a Baer hull.

(ii) My is semisimple.

(iii) Mr ® (@, K;)r has a Baer essential extension.

In this case, %(MR D (@leKz)R) = MR D (@zllKiA)Rv where A = ZZ>O I_é with
I = Anng(M). Furthermore, A = R[q1,q2,...,¢s), where 1 = > riq; with 7; € I and
gel ™t 1<i<n.

Proof. Since Anng(M) # 0, there is a unique family {P;, n;};cr satisfying (i), (ii), and
(iii) of Lemma 2.12. So M = @®,cr(R/P/") as R-modules.

(i)=(ii) Assume that Mg @ (©]L,K;)r has a Baer hull. Put T' = @;er(R/F""). Then
Mpr =2 Tg. SoTr & (@TZIKJ-)R has a Baer hull, say Vg. To show that M is semisimple, we
need to prove that T is semisimple.

First, if T = 0, then we are done. So assume that 7' # 0. We put I = Anng(M). Then
I # 0 by assumption, and I = Anng (7). From the proof of Theorem 2.6, V = ¢y (I) @ W
for some W < V as V is Baer and [ is finitely generated. Since V is Baer, so is £y (I) by
Lemma 2.4(ii).

Say {P1,Ps,...,Ps} is the set of all distinct maximal ideals in {P; | i« € I'}. We put
J=PPy---Ps. Since I C J, ly(J) Cly(I). Put J=a1;R+asR+ -+ a,R. For each
i, 1 <1i<mn,define f; : by (I) — Ly (I) by fi(v) = va;, where v € £y (I). Then we have that
Oy (J) =Nt Ker(f;) <® fy(I) by Lemma 2.4(i).

By the proof of Theorem 2.6, ¢y (I) C E(Tg), and T = ¢y (I). Assume on the contrary
that T is not semisimple. Then there exists n; (i € T') withn; > 2. Let 'y = {i € ' | n; > 2}
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and 'y = {i € T'| n; = 1}. Then I'y # 0.
Now we put
U = (®ier, P71 /P) © (@ier, R/ C Ly (J).

Then U <°®° T. For this, say ny > 2. To show that (P ~'/P/")r <®° (R/P™)g, we
take 0 # (B/P{")r < (R/P")g. Then (B/P{")g/pr1 < (R/P{")g/pri. So B/P[" is a
nonzero ideal of R/P|"*, hence B is a nonzero ideal of R containing P;** properly.

Note that as R is a Dedekind domain, every nonzero prime ideal of R is maximal. Also
since R is a Dedekind domain, B is a unique finite product of prime ideals. Now we put
B = Q1 Q. with each Q; a nonzero prime ideal. As P{"* C B = Q1 Qm, PI" C Q;
for any i, 1 < ¢ < m. So P; C @; and hence P, = Q; for any i, 1 < ¢ < m. There-
fore B = Q- Qn = P with m < n; — 1 as B properly contains P;"'. Consequently,
(PP )R <5 (R/P")g. Similarly, (P/"~'/P")gp <® (R/P/")g for each i € T'y.
Therefore

(@ieI&R‘ni_l/Pim)R < (@ien R/P{“’)R.

So, we see that U <5 T
Hence, by the preceding argument, U < T = (v (I) and thus U <®* {y,(I). Because
U < ty(J) < ty(I), we have ly (J) < £y, (I). Hence by (J) = Ly (I) as by (J) <% by (I).
Let k € Fl. Then ng > 2. Note that R/P,?k - év(I) = gv((]) So P1 . 'Pk . ~~Ps - P]?k,
thus P, 'Py - Py--- Py C P 'P™. Hence Py Py_1Pyy1--- Py C P{* 7. Since ny, > 2,
P, = Py for some P; € {P1,...,Px_1,Pi11,...,Ps}, which is a contradiction. Therefore T
is semisimple, hence M is semisimple.

(ii)=(i) Case 1. M # 0 and m > 1. Since M is semisimple and Anng(M) # 0, M has
only a finite number of homogeneous components by Lemma 2.12, say {Hy | 1 < k < s}. For
each k, 1 < k < s, there exists a nonempty set I'y such that Hy = ©aer, M(1,o) With each
Mj,q) simple. Thus Py := Anng(Hy) = Anng(M o)) for all @ € Ty So P, 1 <k < s,
are distinct maximal ideals of R, and I := Anng(M) =nN;_, P;.

Assume that V is a Baer essential extension of Mg © (&, K;)r. From Theorem 2.6,
V=MaWwith W <V, (&",K;)g < Wg < E(RY™), and W is Baer. Also, by Theorem
2.6, Homgr (W, M) = 0, so Hompr(W, M4, o)) = 0 for k, 1 <k < s and each o € T'y..

Since My ,4) = R/P; as R-modules for each a € T'y, we have Hompg(W, R/P;) = 0. From
the exact sequence 0 - WP, — W — W/W P, — 0, we obtain the following exact sequence

(*) 0 — Hompg(W/W Py, R/Py) — Hompg(W, R/Py) — Homp(W Py, R/P))

as Homp(—, R/P;) is a left exact contravariant functor (see [27, Theorem 2.9, p.35]). Be-
cause Homgr(W, R/P;) = 0, we have that Homgr(W/W Py, R/P;) = 0 from the preceding
exact sequence (*). We notice that W/W P, is an R/P;-module, which is induced from the
R-module structure of W/W P;.

Further, Hompg,p, (W/W Py, R/ Py) = Homp(W/W P, R/Py) = 0. Since R/P; is a field,
W /W Py is a vector space over R/P;. Therefore W/W P, = 0, and thus W = W P;. Similarly,
W = WP for k, 2 < k <s. Because each P;,1 <i < s, is maximal and R is commutative,
I=n;_{P, =P PP, (also, see [30, Lemma 6.12, p.173]). So WI =WP Py---P, =W
and hence WI* = W for each nonnegative integer /.
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Consider the case when m = 2. Then (K; @& Ko)g < Wi < E(Rg) ® E(Rg). We let
J = I, where / is a nonnegative integer. Then W = W.J. We now take k € K;. Then we
have that (k,0) € K1 ® Ko C W = W J. Hence there exists a positive integer n such that
(k,0) = > wia;, where w; € W and a; € J fori, 1 <i < n.

Put w; = (;,v;) € E(Rg)® for i, 1 <i < n. Then (k,0) = (31, miai, Yooy yiai).
So we have k = Y7 | w;a; and 0 = Y " | y;a;. Take ¢ € J~'. Then kg = " | x;qa; and
0=, yiqa;. Since each a; € J and ¢J C R, each ga; € R. So

n

(kq,0) = (Z Z;qa, Zyiqai) = Z(Sﬂu yi)qa; = Zwiqai~
i—1 =1 i=1

i=1

Hence (kq,0) € 31", w;R € W. Therefore (K;.J1,0) C W. By Lemma 2.8, J-! = %,
Thus (K117%, 0) C W for all nonnegative integers ¢. Thus (K14, 0) C W.

Similarly, (0, K2A) C W. So K1A & K;A C W. In general, as (&%, K;)g < Wg, we
obtain @, K;A C W by applying the preceding method.

Since K is a fractional ideal, there exists 0 # r; € R such that ri K3 C R. Put I; = r1 K;.
Then I; & K7 as R-modules. As R is a Dedekind domain, I is a finitely generated projective
R-module. So [ i is isomorphic to a direct summand of R%“) for some positive integer hy.
Hence I, ® g Ap is isomorphic to a direct summand of R") @p Ap = (R®R A)%”) % A%“).

We note that gA is torsion-free. So gA is flat by [27, Theorem 4.33, p.129] since R is a
Dedekind domain. Thus I; ®g A is embedded in R ®g A. By definition of tensor product,
the map f : [y g Ar — 1 AR defined by f(zzzl T ®a;) = 22:1 z;a;, for ; € I; and
a; € A, 1 < i <t, is well-defined. Further, to show that f is an R-module isomorphism,
suppose that Z§=1 xia; = 0 with z; € I; and a; € A, 1 <i <t. Note that Zzzl z; @ a; in
I ® g A can be considered as an element in R®pr A because 1 g A is embedded in RRg A.

Hence
t t t
i=1 i=1 i=1

Thus f is an R-module isomorphism.

Because I; ® g Ag is isomorphic to a direct summand of A%Ll), I, AR is also isomorphic

)

to a direct summand of A%“ . Similarly, for each i, we see that I; Ar is isomorphic to a

direct summand of A%”) for some positive integer h;. We put h = hy +ho+-- -+ hy,. Then
(@™, 1;A) R is isomorphic to a direct summand of Ag). Furthermore, (K;A)p = (I;A)R for
each i. Thus (@], K;A)g is isomorphic to a direct summand of A%l).

As A is a Dedekind domain by Lemma 2.9, EndR(Ag)) = Maty,(Endr(A)) = Mat,(A)
is a Baer ring from [16, Corollary 3.7] or [4, Theorem 6.1.4, p.191]. By Lemma 2.10,

(h)
R

Agl) is a quasi-retractable module. Hence Lemma 2.3 yields that AL’ is a Baer module.

Consequently, (&7, K;A)r is a Baer module by Lemma 2.4(ii).
Now we show that Homp (@™, K;A, M) = 0. Let f € Hompg(K;A, M). Since R is a
Dedekind domain, R = I~'I. Because M1 = 0, we obtain

FUKI™) = (KT = f(K T TN =0.
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So we obtain f(K;A) = 0. Therefore f = 0, and hence Hompg(K; A, M) = 0 for each i. We
note that (Homp(@sen KA, M), +) =2 ([[;cp Homg(K;A, M), +) from [27, Theorem 2.4,
p.30], thus Hompg (®;er K; A, M) = 0. Therefore Mg @ (7, K;A)g is a Baer module from
Theorem 2.6. Furthermore, Mp® (@7 K;A)r < Mp®Wg = Vi. Hence M@ (@1 K; A)r
is the Baer hull of Mp & (7, K,)R.

Case 2. M # 0 and m = 0. Since M is semisimple, M is Baer and so M itself is the
Baer hull of M. In this case, M & (&7, K;A) = M.

Case 3. M = 0 and m > 1. By the preceding argument, each K; is finitely gener-
ated projective as an R-module, hence @ K; is a finitely generated projective R-module.
So @, K; is isomorphic to a direct summand of R%L) for some positive integer h. Now
Mat,(R) = Endr(R™) is a Baer ring since R is Dedekind (see [16, Corollary 3.7] or [4,
Theorem 6.1.4, p.191]). Thus R%L) is a Baer module from Lemma 2.3 because R%l) is
quasi-retractable (from Lemma 2.10).

As a consequence, @, K; is Baer by Lemma 2.4(ii) since it is isomorphic to a direct

summand of R%L). So &2, K; itself is the Baer hull of @, K;. As Anng(M) = R, we see
that A =3",5 o R~* = R, and hence @}, (K;A) = &%, K;.

i

(i)=-(iii) is clear. For (iii)=-(ii), say V is a Baer essential extension of Mpr & (&, K;)R.
Put I = Anng(M) # 0. Assume that M # 0. From the proof of (i)=(ii) in Theorem 2.6,
¢y (I) = M. So we can verify that M is semisimple as in the proof of (i)=(ii). If M = 0,
then we are done.

Finally, from the proof of Lemma 2.9, A = R[q1, ¢, ...,qn], where 1 = >""" | r;q; with
TiEIandqiEI_l,lgiS’n. O

Remark 2.14. From the proof of Theorem 2.13, we notice the following does hold true:
Let R be a Pl-ring and W a right R-module. Assume that M is a simple right R-module.
Then Hompg (W, M) = 0 if and only if WP = W, where P = Anng(M).

In fact, since P is a right primitive ideal of R, R/P is a primitive PI-ring. Therefore,
due to Kaplansky’s result, the ring R/P is simple artinian [28, Theorem 1.5.16, p.36]. If
Hompg(W, M) = 0, then Homg(W/W P, M) = 0 and hence Hompg,p(W/WP, M) = 0 as in
the proof of Theorem 2.13. Since M is simple and the ring R/ P is simple artinian, W/WP =
0 and hence W = WP. Conversely, if W = WP, then f(W) = f(WP) = f(W)P =0, for
all f € Homg(W, M), because M P = 0. Hence f = 0, so Homg(W, M) = 0.

The following is a restatement of Theorem 2.13 for the Baer hull of a module N over a
Dedekind domain for the case when N/¢(N) is finitely generated and Anng(¢(N)) # 0.

Theorem 2.15. Let R be a Dedekind domain. Assume that N is an R-module with N/¢(N)
finitely generated and Anng(t(N)) # 0. Then the following are equivalent.

(i) N has a Baer hull.

(ii) ¢(N) is semisimple.

(iii) N has a Baer essential extension.

The next lemma details the structure of finitely generated modules over a Dedekind
domain.

Lemma 2.16. ([30, Theorem 6.16, p.177]) Let R be a Dedekind domain and N a finitely
generated R-module. Then there exist positive integers n1,na, ..., ny (k is a nonnegative in-
teger), nonzero maximal ideals Py, P, ..., Py, and nonzero fractional ideals Ky, Ko, ..., K,
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(m is a nonnegative integer) of R such that N = (®}_, R/P]") & (&, K;) as R-modules.

Our next corollary extends [24, Proposition 2.19 and Remark 2.20] to the case of Dedekind
domains.

Corollary 2.17. Let R be a Dedekind domain and N be a finitely generated R-module.
Then the following are equivalent.

(i) N is Baer.

(ii) N is semisimple or N is torsion-free.

Proof. (i)=(ii) Let N be Baer. From Lemma 2.16, Anng(t(N)) # 0. Since N itself is
the Baer hull of N, t(N) is semisimple by Theorem 2.15. Therefore Lemma 2.16 yields that
N = (&F_R/P;) ® (®7-, K;), where k and m are nonnegative integers, Py, P, ..., P, are
maximal ideals (may not be distinct), and K, Ka, ..., K, are nonzero fractional ideals.

Suppose that k& £ 0 and m # 0. Since N is Baer, HomR(EB;»”:lKj,EBf:lR/Pi) = 0 from
Theorem 2.6. Hence Hompg (K7, R/P;) = 0. As in the proof of Theorem 2.13, K1 P = K,
and so KflKlPl = Kl_lKl = R. Thus P, = R, a contradiction. Therefore, either £k = 0 or
m = 0. So N is torsion-free or N is semisimple.

(ii)=(i) Assume that N is semisimple or N is torsion-free. If N is semisimple, then
obviously IV is Baer. So we suppose N is torsion-free. Then N is R-module isomorphic to
a finite direct sum of nonzero fractional ideals by Lemma 2.16. As in the proof of Case 3 in
(ii)=(i) of Theorem 2.13, we can show that N is Baer. O

Assume that N is a finitely generated module over a Dedekind domain. If N is neither
semisimple nor torsion-free, then N is not Baer by Corollary 2.17. In the following theorem,
we characterize the existence of the Baer hull of NV and a Baer essential extension of N and
describe the Baer hull of N explicitly. Recall that from Lemma 2.16, N = &% | (R/P") &
(@71, Kj), where P; are nonzero maximal ideals of R and K are nonzero fractional ideals
of R ( where k and m are nonnegative integers).

Theorem 2.18. Let R be a Dedekind domain, and let N be a finitely generated R-module.
Then the following are equivalent.

(i) N has a Baer hull.

(ii) t(N) is semisimple.

(iii) N has a Baer essential extension.

In this case, B(Ng) = (&f_ | (R/P"))gr & (&7 K;A) g, where A =Y, ¢ with I =
Anng(M). Furthermore, A = R[qi,qo,...,qs), where 1 = > riq with ; € I and
qiEI_l, 1<y <n.

Proof. Note that t(N) = @&k | (R/P]') as R-modules. Hence Anng(t(N)) # 0, so
Theorem 2.15 yields the proof. The explicit description of the Baer hull of N follows from
Theorem 2.13. (]

In the next example, we notice that conclusion of Theorem 2.13 and Theorem 2.15 do
not hold when R is noetherian domain, in general.

Example 2.19. (see also [4, Example 8.4.13, p.319]) Let R = Z[z], the polynomial ring
over Z. Put N = (R® R)g. Then ¢(N) = 0, so ¢(N) is semisimple. However, N has no
Baer hull. For this, note that if N is a Baer module, then Endg(N) = Maty(R) is a Baer
ring from Lemma 2.3. So [16, Corollary 3.7] (or [4, Theorem 6.1.4, p.191]) yields that the
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ring R = Z[z] must be Priifer, which is a contradiction.

Let F = Q(z), the field of fractions of R. Note that E(N) = FOF. Put U = F®R. Then
by [16, Theorem 2.16] (or by [4, Theorem 4.2.18, p.107]), Ug is a Baer module. Similarly,
Vi := (R@® F)pr is a Baer module. As UNV = N is not Baer, N has no Baer hull. This
example exhibits a module N which is the quasi-Baer hull (of itself) but has no Baer hull.

M. Schmidmeier raised the following question recently: Does N1 & No have a Baer hull
when modules N1 and No have Baer hulls? We remark that Example 2.19 gives a negative
answer to this question (see also Example 3.10).

3. Applications and Examples

In this final section, our focus is on some applications of our results. Properties of Baer
hulls are obtained and examples which illustrate our results are provided. In view of Example
3.6, infinitely generated modules over a Dedekind domain may not have Baer hulls. The
existence and description of a Baer module hull of a given finitely generated module M over
arbitrary commutative rings or domains, remains open.

We start with the following remark.

Remark 3.1. (i) In Theorem 2.13, we put A =" ,o,I~*, where I = Anng(M). Now we
can verify that A = 3> Py Py %2 ... Pt where £y, fy,. .., L, run through all nonnegative
integers. In fact, I C P; for all ¢ since I = PPy --- Ps. For i, 1 <1 < s, Pi_1 C I7! and so
P[f C I~* for every nonnegative integer ¢. Hence, from Lemma 2.8,

P1—€1 P2—€2 . PS—ZS C I—€1 I—Zg L I—ZS _ I—(€1+€2+--~+és) C A.

Thus > PfZlP;Zz e Ps’es C A, where 1,05, ...,fs run through all nonnegative integers.

Conversely, from Lemma 2.8, I™! = (PyP,---P,)™' = P 'P;'-.. P71, Therefore it
follows that I~=* = P ZP; b P! for any nonnegative integer /. Hence we obtain that
ACS P1—€1P2—€2 ..« P7*% where {1, {5, ...,0, run through all nonnegative integers.

Consequently, A =" PfZngz2 -+« P7*% where £1,/s, .../, run through all nonnegative
integers.

(ii) Let R be a commutative PID. Assume that M is a nonzero semisimple R-module
with nonzero annihilator in R. Then from Lemma 2.12, M has only a finite number of
homogeneous components. Let {Hy | 1 < k < s} be the set of all homogeneous components
of M. For k, 1 < k < s, we put Hy = @&oMy o) with each My o) simple. Therefore
My.a) = R/prR for k, 1 <k < s, with p; a nonzero prime.

We put P, = Anng(Hy) for k, 1 < k < s. Then P, = pyR. For a nonnegative integer ¢,
we can routinely verify that Pk_g = (1/pL)R for k, 1 < k < s. Therefore,

Propy Pt = (1P (/%) - (1/pE)R

for nonnegative integers ¢1,4s, ..., {;.

Let A=3,- I7* where I = Anng(M) = PyPy--- Py = p1p2---psR. Then from the
preceding argument, A = R[1/py,1/pa,...,1/ps]. Put a = pips---ps. Thus A = R[1/a]
because I~* = (1/a*)R.

The following example illustrates Theorem 2.13 and Remark 3.1.
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Example 3.2. Say I';,i = 1, 2, 3, are nonempty sets and m is a positive integer. By
Theorem 2.13 and Remark 3.1, the Baer hull of Z{™ & Z{"? @ z{"*) & z(m is

8 oz 0 28 @ Z[1/2, 1/3, 1/5]™ = 28 0 2™ 0 2" @ 2[1/30) ™.

We recall that a ring R is called semiprimary if R/J(R) is artinian and J(R) is nilpotent,
where J(R) is the Jacobson radical of R. It is well-known that if R is a semiprimary ring,
then R is right hereditary if and only if R is left hereditary.

Lemma 3.3. ([32, Theorem 2] and [26, Theorem 3.3]) Let R be a ring. Then the following
are equivalent.

(i) R is a semiprimary right (and left) hereditary ring.

(ii) CFM (R) is a Baer ring for any nonempty set A.

Definition 3.4. (i) (|24, Definition 2.5]) A module My, is said to be K-nonsingular if, for
all ¢ € Endr(M), Ker(¢)r <*° Mg implies ¢ = 0.

(ii) ([24, Definition 2.7]) A module My, is called K-cononsingular if, for any N < Mg,
ls(N) =0 implies Np <°* Mp, where S = Endg(M).

In [24], it is proved that every nonsingular module is -nonsingular, but converse is not
true in general. For more details on K-nonsingular modules, see [24] and [25]. By Chatters
and Khuri in [5], a ring R is right extending and right nonsingular if and only if R is Baer
and right cononsingular.

The following shows that there are close connections between an extending module and
a Baer module.

Lemma 3.5. ([24, Theorem 2.12]) A module Mg is extending and K-nonsingular if and
only if Mg is Baer and K-cononsingular.

Let R be a Dedekind domain and let N be an R-module. Assume that N/¢(N) is finitely
generated and Anng(¢(N)) # 0. In this case by Theorem 2.15, N has Baer hull if and only
if ¢(N) is semisimple. The following example exhibits that there exists an R-module N such
that t(N) is semisimple and Anng(¢(N)) # 0, but N has no Baer hull. So the assumption
“N/t(N) is finitely generated” in Theorem 2.15 is not superfluous.

Example 3.6. Let M = @®}_,Z,,, where n is a positive integer, and all p; are prime integers.
Say pi1,pa,...,ps are all the distinct prime integers in {p1,p2,...,pn}. Let a = pipa---ps.

Since Z[1/a] is not a field, Z[1/a] is not semiprimary because Z[1/a] is a domain. By
Lemma 3.3, there exists a nonempty set A such that CFMy (Z[1/a]) is not a Baer ring.
Furthermore, we have the following.

(i) M @ Z[1/a]™ is not a Baer Z-module.
(ii) Let N = M @ Z®). Then N/t(N) is not finitely generated.
(iii) N = M @ Z™) has no Baer hull as a Z-module.

To prove (i), first we show that Endz(Z[1/a]™) = Endzy 4 (Z[1/a]™) by using similar
method that used in the proof of Lemma 2.10. Therefore

Endz(Z[1/a)™) = Endgp /4 (Z[1/a] M) = CFM, (Z[1/a]).
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Now Z[1/a]™) is not a Baer Z-module from Lemma 2.3 as Endz(Z[1/a]™) = CFM,(Z[1/a])
is not a Baer ring. By Lemma 2.4(ii), M @ Z[1/a]® is not a Baer Z-module.

For (ii), we prove that A is an infinite set. Assume on the contrary that A is a finite
set, say |A| = m, where m is a positive integer. Note that Z[1/a] is a Priifer domain. So
Endz(Z[1/a]™) = Mat,,(Z[1/a]) is a Baer ring by [16, Corollary 3.7] (or [4, Theorem 6.1.4,
p.191]). Thus we get a contradiction. Therefore A is infinite, so N/t(N) = Z®) is not
finitely generated as a Z-module.

To prove (iii), for each o € A, let W, = @®;cpU;, where U, = Z[1/a] and U; = Q for
i # a. First we claim that W, is a Baer Z-module. For this, note that Z[1/a] is a nonsingular
extending Z-module and ©;cp\ (o) Us = QA\ed) g a nonsingular injective Z-module. Due to
G. Lee, S.T. Rizvi, and C. Roman (see [4, Theorem 4.2.18, p.107]), W, is a Baer Z-module
for each o € A.

Assume on the contrary that M @ Z®) has a Baer hull, say V. As Homg(Z[1/a], M) = 0
and Homz(QW\Meb M) = 0 for each a € A, it follows that Homgz(W,, M) = 0 from [27,
Theorem 2.4, p.30]. So M & W, is a Baer module for each o € A by Theorem 2.6. Thus

V CNaea(M & W) = M & (NaeaWa) = M & Z[1/a]™

because Naea Wy = Z[1/a]™.

We note that V is a Baer module and M @ Z®) < V < E(M @ Z™). Hence from
Theorem 2.6, V = M @W such that Z*) < W < B(ZWM) = QM , W is a Baer module, and
Homgz (W, M) = 0. Now put I = Annz(M) = aZ. As in the proof of (ii)=(i) for Theorem
2.13, we have that WI = W. Put A = >, I~“ Then by Remark 3.1, A = Z[1/a]. By
the method that used in the proof of (ii)=(i) for Theorem 2.13, A®) = (ZA)N) C W. So
Z[1/a]™ C W. Hence M @ Z[1/a]® < M & W =V.

Consequently, V = M @ Z[1/a]™, and thus M & Z[1/a]™ is a Baer module, which is a
contradiction to (i). Hence M @ Z* has no Baer hull.

Example 3.7. (i) Let V = Z, & Z[1/p], where p is a prime integer. Then by Theorem 2.13
and Remark 3.1, V' is the Baer hull of Z, ® Z as a Z-module. We note that Z, @ Z is not
extending by [12, Corollary 2]. Hence in view of Lemma 3.5, one might expect that V is
also the extending hull of Z, ® Z as a Z-module. But this is not true. Furthermore, V' is
not even extending from [12, Corollary 2].

(ii) We remark that in the chain of Z-submodules Z, < Z,> < --- < Zpeo of Zp~ (p a
prime integer), Z, is the Baer hull (also the quasi-injective hull) of itself and Zp~ is the
injective hull of each of the modules in the chain. However, Z,» (n > 1) has no Baer hull.
by Theorem 2.18. Also note that Z,-~ has no Baer hull.

In Proposition 3.8 and Example 3.9, we consider the isomorphism problem for Baer hulls
as follows: Let N1 and N2 be modules with Baer hulls B(N1) and B(Nz), respectively. Then
is it true that N1 = Ny if and only if B(Ny) = B(Na)?

Proposition 3.8. Let N; and Ny are isomorphic modules. If N7 has a Baer hull B(Ny),
then Ns has a Baer hull B(N3), and B(N;) = B(N2) as modules.

Proof. Let 0 : Ny — N> be a module isomorphism. Then there exists a module isomor-
phism & : E(Ny) — E(N3), which is an extension of 0. So 7(B(N7)) = B(Na). O
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The next example shows that the converse of Proposition 3.8 does not hold true. In other
words, there exist modules N7 and Ny such that B(N;) = B(N3) (hence B(Ny) = B(N2)
as modules), but N; 2 No. Thus the isomorphism problem does not hold for the case of
Baer hulls.

Example 3.9. Let Ny = Zy & Zs ® Z. Then by Theorem 2.13 (also see Remark 3.1),
Zs ® Z3 ® Z[1/6] is the Baer hull of Ny as Z-modules.

Next, let Ny = Zo @ Z3 @ Z[1/3]. Say V is a Baer module such that Ny <V < E(N3).
From Theorem 2.6, V = Zy @ Z3 @ W for some Baer module W such that Z[1/3] <W < Q
and Homz (W, Zy@©7Z3) = 0. Thus Homgz(W, Zs) = 0, and so 2¥W = W for any nonnegative
integer k as in the proof of Theorem 2.13.

Therefore 1/2% € W for any positive integer k, and thus Z[1/2, 1/3] < W. Hence we
obtain

Lo ®Zs ®L[)2,1/3] = Ly & Zs S Z[1/6] < V.

Because Zy & Z3 ¢ Z[1/6] is Baer as a Z-module, Zy @ Zs & Z[1/6] is the Baer hull of Ns.

Consequently, Zo & Z3 & Z[1/6] is the Baer hull of both N; and N,. However, Nj is not
isomorphic to Ny as Z-modules.

Indeed, if Ny = Ny, then Z = Z[1/3] as Z-modules. Now say g € Homgz(Z, Z[1/3]) is a
Z-module isomorphism. Let ¢g(1) = s/3™ € Z[1/3] with 0 # s € Z and a nonnegative integer
n. Then Z[1/3] = g(Z) = g(1)Z = (s/3™)Z. Thus 1/3"*1 = (5/3")m for some m € Z.
Hence 1 = 3sm, which is impossible. Therefore N; 22 N5 as Z-modules.

We conclude this paper by an example where we compare the direct sum of Baer hulls
with the Baer hull of a direct sum of modules.

Example 3.10. In Example 2.19, we provide two modules U and V such that U and V'
have Baer hulls, but U & V' does not have a Baer hull.

Recall that B(—) denotes the Baer hull of a module if it exists. Here, we show that there
exist two modules M and N such that M, N, and M & N have Baer hulls B(M), B(N),
and B(M @ N), respectively. But B(M & N) % B(M) & B(N).

Indeed, let M = Z, (p a prime integer) and N = Z as Z-modules. Then B(M) = Z,, and
B(N) = Z since Z, is a semisimple Z-module and Z is a Baer ring. Therefore we have that
B(M)®B(N)=2Z,dZ.

On the other hand, B(M & N) = B(Z, ® Z) = Z, & Z[1/p] (see Theorem 2.13 and
Remark 3.1). Hence B(M & N) ¥ B(M) ® B(N) because Z ¥ Z[1/p] as Z-modules by the
argument that used in Example 3.9.

Question 3.11. Let p be a prime integer. Then is Z,, © Z the quasi-Baer module hull of
Zy, ® Z as a Z-module? (See [26] for the definition of quasi-Baer modules and Definition
2.11 for quasi-Baer module hulls.)

In a sequel to this paper, we will study Rickart module hulls and their possible description.
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