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Abstract. The notion of a Baer ring, introduced by Kaplansky, has been extended to that

of a Baer module using the endomorphism ring of a module in recent years. There do exist

some results in the literature on Baer ring hulls of given rings. In contrast, the study of a Baer
module hull of a given module remains wide open. In this paper we initiate this study. For a

given module M , a Baer module hull, B(M), is the smallest Baer overmodule contained in a

fixed injective hull E(M) of M .
For a certain class of modules N over a commutative noetherian domain, we characterize

all essential overmodules of N which are Baer. As a consequence, it is shown that Baer module

hulls exist for such modules over a Dedekind domain. A precise description of such hulls is
obtained. It is proved that a finitely generated module N over a Dedekind domain has a Baer

module hull if and only if the torsion submodule t(N) of N is semisimple. Further, in this case,

the Baer module hull of N is explicitly described.
As applications, various properties and examples of Baer hulls are exhibited. It is shown

that if N1, N2 are two modules with Baer hulls, N1 ⊕ N2 may not have a Baer hull. On the

other hand, the Baer module hull of M = Zp ⊕ Z (p a prime integer) is precisely given by
B(M) = Zp ⊕ Z[1/p]. It is shown that infinitely generated modules over a Dedekind domain
may not have Baer hulls.

1. Introduction

Shoda in 1952 [31] and Eckmann and Schopf in 1953 [7] independently proved that for
every module MR over an arbitrary ring R there exists a unique (up to isomorphism over M)
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minimal injective overmodule E(M) called its injective hull. The study of a more general
type of “hull” of M or the unique smallest essential overmodule of M in a fixed injective hull
E(M) of M having some special property has been of interest since then. This includes, for
a given module M , the study of hulls of M having properties which generalize injectivity
(for example, quasi-injective, continuous, quasi-continuous hulls) or properties which are
otherwise connected to injectivity. An important focus of investigations has been to prove
the existence and explicit descriptions of various types of module hulls.

Recall that a module M is called quasi-injective if f(M) ⊆M for each f ∈ End(E(M)).
Among other well-known generalizations of injectivity, the study of the continuous, quasi-
continuous, and extending properties has been extensive in the literature (see for example
[6], [18], [19], [20], and [23]). A module M is said to be extending if, for each V ≤M , there
exists a direct summand W ≤⊕ M such that V ≤ess W . And an extending module M is
called quasi-continuous if for all direct summands M1 and M2 of M with M1 ∩M2 = 0,
M1 ⊕M2 is also a direct summand of M . Furthermore, an extending module M is said to
be a continuous if every submodule N of M which is isomorphic to a direct summand is
also a direct summand of M . The well-known hierarchy of these properties is as follows:

injective ⇒ quasi-injective ⇒ continuous ⇒ quasi-continuous ⇒ extending

(while none of the reverse implications hold).

For a given module M , let H = EndR(E(M)) denote the endomorphism ring of its
injective hull E(M). Then by Johnson and Wong [11], the unique quasi-injective hull of
the module M is precisely HM . Goel and Jain [9] showed that there always exists a
unique quasi-continuous hull of every module within a fixed injective hull E(M). The
quasi-continuous hull of M is exactly given by ΩM , where Ω is the subring generated by
all idempotents of H = End(E(M)). In contrast to this, it was shown by Müller and Rizvi
in [19] that continuous module hulls do not always exist in general. However, they did
show the existence of continuous hulls of certain classes of modules over a commutative ring
(such as nonsingular cyclic ones) and provided a description of these continuous hulls (see
[19, Theorem 8]). Similarly, it is also known that extending module hulls do not always
exist (for example, see [4, Example 8.4.13, p.319]). Closely linked to these notions, are the
notions of Baer and Rickart modules. In particular, every nonsingular extending module is
a Baer module while the converse holds under a certain dual condition (see Lemma 3.5). In
this paper, we introduce and study Baer (module) hulls of certain modules over a Dedekind
domain.

Kaplansky introduced the notions of Baer and Rickart rings in [13]. He and many others
obtained a number of interesting results on these two classes of rings which have their roots
in Functional Analysis (for example, [1], [2], [4], [5], [10], [13], and [17]). More recently,
the notions of a Baer ring and a Rickart ring were extended to analogous module theoretic
notions using the endomorphism ring S of the module by Rizvi, Roman, and Lee ([24] and
[15]). A module M is called a Baer module if, for any NR ≤MR, there exists e2 = e ∈ S such
that `S(N) = Se, where S = End(MR) and `S(N) = {f ∈ S | f(N) = 0}. Equivalently, a
module M is Baer if and only if for any left ideal I of S, rM (I) = fM with f2 = f ∈ S,
where rM (I) = {m ∈M | Im = 0}.

Recall from [4, Chapter 8] that the Baer ring hull of a ring R is the smallest Baer right
essential overring of R in E(RR). While some work has been done on the existence of a
quasi-Baer ring hull of a ring R for some special classes of rings ([2], [3], and [4]), there is
almost nothing known about the existence or description of Baer module hulls. To the best of
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our knowledge, the only explicit results about Baer ring hulls in existing literature have been
due to Mewborn, Oshiro, and Hirano, Hongan and Ohori. However, these results about ring
hulls are only for the case of commutative semiprime rings or of reduced right Utumi rings.
Further, in each of these cases the Baer ring hull is not distinct from the quasi-Baer ring
hull of R. Mewborn [17, Proposition 2.5], showed the existence of a unique Baer ring hull of
a commutative semiprime ring R and showed that it is exactly the subring of the maximal
ring of quotients Q(R) generated by R and the idempotents of Q(R). That is, the Baer
ring hull of a commutative semiprime ring is given by RB(Q(R)), where B(Q(R)) is the set
of all (central) idempotents of Q(R). As a direct consequence, Oshiro [21, Proposition 3.3]
showed that the Baer ring hull of a commutative von Neumann regular ring is a continuous
regular ring. Oshiro [22] then extended his work and constructed the Baer ring hull of a
commutative von Neumann regular ring by using sheaf representations. Hirano, Hongan,
and Ohori [10,Theorem 4] proved the existence of a Baer ring hull for a reduced right Utumi
ring. These results on the existence of Baer ring hulls of a commutative semiprime ring or
a reduced Utumi ring were recently extended and a unified result was obtained for the case
of arbitrary semiprime rings by Birkenemier, Park, and Rizvi [2, Theorem 3.3].

In contrast to the ring hull of a given ring R, the study of a module hull of a given module
MR appears to be more natural because the injective hull E(MR) as an overmodule of MR

always exists, while E(RR) does not have a ring structure in general. So the ring hulls of
R are more useful when these are either contained in the maximal right ring of quotients
Q(R) of R or the injective hull E(RR) is endowed with a compatible ring structure (see [4,
Chapter 7]).

For a given module M , the smallest Baer overmodule of M in E(M) is called the Baer
module hull (in short, the Baer hull) of M and we denote it by B(M). One of the difficulties
in dealing with the Baer module hull of a module MR is the interplay of the scalar multipli-
cation of M with R on one side of M and with the endomorphism ring S = End(MR) on the
other side of M . Such an overmodule of M not only has to satisfy the conditions for being
Baer but also being the smallest such overmodule of M to be a hull. The Baer property of
the hull thus necessitates a consideration of endomorphism rings of all overmodules of M in
E(M) before we can locate the smallest Baer overmodule of M .

In this paper, we initiate the study of the Baer module hull of a given module MR. In
particular, for a module M and a fixed injective hull E(M) of M we study the existence
of the Baer module hull of M of certain types of modules over a Dedekind domain. It is
shown that a Baer hull, may not always exist for infinitely generated modules over Dedekind
domains. We obtain explicit description of Baer hulls of a certain class of modules over a
Dedekind domain.

From [24] it is known that M = Zp ⊕ Z (p a prime integer) is not a Baer Z-module,
while Zp and Z are. We first characterize when intermediate modules between an analogous
direct sum as a module over a commutative noetherian domain and its injective hull are
Baer. This result is then used to explicitly construct and characterize the Baer hull of
an module N over a Dedekind domain R, when AnnR(t(N)) 6= 0 and N/t(N) is finitely
generated, where t(N) denotes the torsion submodule of N . Consequently, we prove that
every finitely generated module over a Dedekind domain, has a unique Baer hull precisely
when its torsion submodule is semisimple. This unique hull is explicitly described.

All rings are assumed to have identity and all modules are assumed to be unitary. For right
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R-modules MR and NR, we use Hom(MR, NR), HomR(M,N), or Hom(M,N) to denote the
set of all R-module homomorphisms from MR to NR. Likewise, End(MR), EndR(M), or
End(M) denote the endomorphism ring of an R-module M . For an R-module homomor-
phism f ∈ HomR(M,N), Ker(f) is used for the kernel of f .

We use E(MR) or E(M) to denote an injective hull of a module MR. For a module M ,
L ≤ M , N ≤ess M , and U ≤⊕ M denote that L is a submodule of M , N is an essential
submodule of M , and U is a direct summand of M , respectively. If M is an R-module,
AnnR(M) stands for the annihilator of M in R.

For a module M and a set Λ, let M (Λ) denote the direct sum of |Λ| copies of M , where
|Λ| is the cardinality of Λ. When Λ is finite with |Λ| = n, then M (n) stands for M (Λ).
Matn(R) denotes the n × n matrix ring over a ring R. The symbols Q, Z, and Zn(n > 1)
stand for the field of rational numbers, the ring of integers, and the ring of integers modulo
n, respectively.

As mentioned, we will use the term Baer hull for Baer module hull in this paper.

2. Baer Module Hulls

In [24], it was shown that a finitely generated module N , over a commutative PID, is a
Baer module if and only if N is either semisimple or torsion-free. In particular, Zp ⊕ Z is
not a Baer Z-module, where p is a prime integer. Motivated by the preceding result and
example, for a given finitely generated module N over a commutative domain R, it is of
interest to study intermediate Baer modules between N and E(N), and investigate possible
existence of the Baer hull of N . The investigations on Baer hulls are even more relevant since
nothing is known about the Baer hulls. The only information that exists is that of a couple
of special cases of Baer ring hulls, which in fact, were shown to be precisely quasi-Baer ring
hulls [4] as discussed earlier.

Let G = Z
p
k1
1
⊕ Z

p
k2
2
⊕ · · · ⊕ Zpkn

n
⊕ Z(m), where p1, p2, . . . , pn are prime integers (not

necessarily distinct) and k1, k2, . . . , kn, and m are nonnegative integers. If one of kis is
greater than 1, then there is no intermediate Baer Z-module between G and E(GZ). In fact,
say V is an intermediate abelian group between G and E(GZ), and assume k1 ≥ 2. Then
by Kulikov [29, 5.2.10, p.98], either Z

p
`1
1

with `1 ≥ k1 or Zp∞1 is a direct summand of V .

Because neither Z
p
`1
1

nor Zp∞1 is a Baer Z-module, V is not a Baer Z-module (see Lemma

2.4(ii)). So it is absurd to study the Baer hull for G when one of k1, k2, . . . , kn is greater
than 1. Thus an investigation of Baer hulls of finitely generated abelian groups G makes
sense only when the torsion subgroup of G is a semisimple Z-module.

In general, if R is a Dedekind domain and N is a finitely generated R-module, we need to
assume that t(N) is semisimple for investigation of intermediate Baer modules between N
and E(N), where t(N) is the torsion submodule of N (cf. Theorems 2.6 and 2.13). In this
case, t(N)⊕E(N/t(N)) is the ‘largest’ intermediate Baer module between N and E(N) (see
Theorem 2.6). Hence it is of interest to investigate the existence of the ‘smallest’ Baer in-
termediate module between N and E(N) (i.e., Baer hull of N). We explicitly construct and
characterize the Baer hull of a module N over a Dedekind domain R when AnnR(t(N)) 6= 0
and N/t(N) is finitely generated (thus, N ∼= t(N) ⊕ N/t(N)). In particular, it is shown
that if M is a module over a Dedekind domain R whose annihilator in R is nonzero, then
M ⊕ (⊕mi=1Ki) has a Baer hull if and only if M is semisimple, where {Ki | 1 ≤ i ≤ m} are
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fractional ideals of R (Theorem 2.13). As a consequence, in this paper every finitely gener-
ated module N over a Dedekind domain has a Baer hull precisely when t(N) is semismple
(Theorem 2.18). The Baer module hull is explicitly described in these cases. Some applica-
tion of our results and explicit examples that illustrate and delimit our results are provided
in Section 3.

Among explicit constructions of Baer hulls, for given nonempty sets Γ1,Γ2,Γ3 and a

positive integer m, we show in Example 3.2 that the Baer hull of Z(Γ1)
2 ⊕Z(Γ2)

3 ⊕Z(Γ3)
5 ⊕Z(m)

is precisely given by Z(Γ1)
2 ⊕Z(Γ2)

3 ⊕Z(Γ3)
5 ⊕Z[1/30](m). Thus M = Zp⊕Z (p a prime integer)

has a unique Baer hull given by V = Zp⊕Z[1/p]. We note that M and V are not extending.
In contrast, W = Zp2 is the extending (quasi-injective) hull of itself, but W has no Baer
hull.

We start with the following definition.

Definition 2.1. ([24, Definition 2.2]) A right R-module M is called a Baer module if, for
any NR ≤ MR, there exists e2 = e ∈ S such that `S(N) = Se, where S = End(MR) and
`S(N) = {f ∈ S | f(N) = 0}. Thus a right R-module M is Baer if and only if for any left
ideal I of S, rM (I) = fM with f2 = f ∈ S, where rM (I) = {m ∈M | Im = 0}.

We recall that a ring R is called a Baer ring if the right annihilator of any nonempty
subset of R is generated, as a right ideal, by an idempotent of R. Thus a ring R is a Baer
ring if and only if RR is a Baer module.

Definition 2.2. ([26, Definition 2.3]) Let MR be an R-module and S = EndR(M). Then
MR is called quasi-retractable if HomR(M, rM (I)) 6= 0 for every left ideal I of S with
rM (I) 6= 0 (or, equivalently, if rS(I) 6= 0 for every left ideal I with rM (I) 6= 0).

Lemma 2.3. ([26, Theorem 2.5]) A module MR is Baer if and only if EndR(M) is a Baer
ring and MR is quasi-retractable.

A module M is said to have the strong summand intersection property (SSIP) if the
intersection of any family of direct summands of M is a direct summand.

Lemma 2.4. (i) ([24, Proposition 2.2]) A module M is Baer if and only if Ker(f) ≤⊕ M
for each f ∈ End(M) and M has the SSIP.

(ii) ([24, Theorem 2.17]) Any direct summand of a Baer module is a Baer module.

Say M and N are R-modules. Then M is said to be N -injective if, for any W ≤ N and
f ∈ Hom(W,M), there exists ϕ ∈ Hom(N,M) such that ϕ|W = f . Recall from [15] that M
is called N -Rickart if Ker(f) ≤⊕ M for each f ∈ Hom(M,N). Also recall from [26] that M
and N are said to be relatively Rickart if M is N -Rickart and N is M -Rickart.

The following lemma is [26, Theorem 3.6] (also see [4, Theorem 4.2.17, p.105]).

Lemma 2.5. Let {Mi | 1 ≤ i ≤ n} be a finite set of Baer modules. Assume that Mi and
Mj are relatively Rickart for i 6= j, and Mi is Mj-injective for i < j. Then ⊕ni=1Mi is a
Baer module.

Let R be a commutative noetherian domain and F be its field of fractions. Assume
that N = MR ⊕ (⊕i∈ΛKi), where M is semisimple with a finite number of homogeneous



6

components, and {Ki}i∈Λ is a set of nonzero submodules of FR. Our first focus is to study
intermediate modules between N and E(N) which happen to be Baer modules.

Theorem 2.6. Let R be a commutative noetherian domain, which is not a field. Assume
that M is a nonzero semisimple R-module with only a finite number of homogeneous com-
ponents, and {Ki | i ∈ Λ} is a nonempty set of nonzero submodules of FR, where F is the
field of fractions of R. Let VR be an essential extension of MR ⊕ (⊕i∈ΛKi)R. Then the
following are equivalent.

(i) V is a Baer module.
(ii) (1) V = M ⊕W for some Baer essential extension W of (⊕i∈ΛKi)R.

(2) HomR(W,M) = 0.

Proof. (i)⇒(ii) We assume that V is a Baer module. Let {Hk | 1 ≤ k ≤ s} be the set of
all homogeneous components of M . Then M = ⊕sk=1Hk. For each k, 1 ≤ k ≤ s, there exists
a nonempty set Γk such that Hk = ⊕α∈Γk

M(k,α), where each M(k,α) is a simple module.

For k, 1 ≤ k ≤ s, we put Pk = AnnR(M(k,α)), where α ∈ Γk, and recall that AnnR(−)
denotes the annihilator of a module in R. Then I := ∩sk=1Pk = AnnR(M). So I 6= 0
because each Pk 6= 0. As R is noetherian, I = a1R + · · · + amR, for some a1, . . . , am ∈ I.
For i, 1 ≤ i ≤ m, define ϕai : V → V by ϕai(v) = vai, where v ∈ V . Then ϕai ∈ EndR(V ).

Since V is a Baer module, Lemma 2.4(i) yields that Ker(ϕai) = `V (aiR) is a direct
summand of V , for each i, where `V (−) is the annihilator in V . So `V (I) = ∩mi=1`V (aiR) is
a direct summand of V by Lemma 2.4(i). Hence V = `V (I)⊕W for some W ≤ V . As V is
a Baer module, W is a Baer module by Lemma 2.4(ii).

We claim that `V (I) = M . For this, note that M ⊆ `V (I). Let Y = E(M) ⊕ E(R
(Λ)
R ).

As R is noetherian, E(R
(Λ)
R ) = E(RR)(Λ), and so E(⊕i∈ΛKiR) = ⊕i∈ΛE(KiR) = E(RR)(Λ).

Therefore

V = `V (I)⊕W ≤ Y = E(M)⊕ E(RR)(Λ) = E(M)⊕ (⊕i∈ΛE(KiR)).

Let t(Y ) be the torsion submodule of Y . Say 0 6= x ∈ E(M). Then there exists r ∈ R
such that 0 6= xr ∈ M ⊆ `V (I) since M ≤ess E(M). Take 0 6= b ∈ I. Then xrb = 0 with
0 6= rb ∈ R. Thus E(M) ⊆ t(Y ).

Next, let y ∈ t(Y ). Then y = µ + ν ∈ E(M) ⊕ E(RR)(Λ), where µ ∈ E(M) and
ν ∈ E(RR)(Λ). So there exists 0 6= c ∈ R such that 0 = yc = µc+ νc. Hence νc = 0. Since
E(RR) is the field of fractions of R, we see that ν = 0. Therefore y = µ ∈ E(M). Thus
t(Y ) ⊆ E(M). Consequently, t(Y ) = E(M).

Say v ∈ `V (I). Then v is a torsion element in V , so it is a torsion element of Y . Thus
v ∈ t(Y ) = E(M). Since R is noetherian,

E(M) =
(
⊕α∈Γ1

E(M(1,α))
)
⊕
(
⊕β∈Γ2

E(M(2,β))
)
⊕ · · · ⊕

(
⊕γ∈Γs

E(M(s,γ))
)
.

So there exist M1, . . . ,Mn ∈ {M(1,α),M(2,β), . . . ,M(s,γ) | α ∈ Γ1, β ∈ Γ2, . . . , γ ∈ Γs} such
that v ∈ E(M1) ⊕ · · · ⊕ E(Mn). Put v = y1 + · · · + yn ∈ E(M1) ⊕ · · · ⊕ E(Mn), where
yi ∈ E(Mi) for i, 1 ≤ i ≤ n. For any a ∈ I, we have that 0 = va = y1a + · · · + yna, hence
y1a = 0, . . . , yna = 0. Since y1a = 0 for all a ∈ I, y1I = 0. Similarly, y2I = 0, . . . , ynI = 0.

Now M1 ⊆ y1R + M1 ⊆ E(M1), and hence y1R + M1 is a uniform module. Because
(y1R + M1)I = 0, we see that y1R + M1 is an R/I-module induced by the R-module
structure of y1R+M1. Hence y1R+M1 is a uniform R/I-module.
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Further, since I = ∩si=1Pi and Pi are distinct maximal ideals of R,

R/I ∼= R/P1 ⊕ · · · ⊕R/Ps

by the Chinese Remainder Theorem. So R/I is a finite direct sum of fields R/Pi (hence
R/I is a semisimple artinian ring). Therefore y1R + M1 is a simple R/I-module because
y1R + M1 is uniform as an R/I-module. Since M1I = 0, M1 is also an R/I-module which
is induced from the R-module structure of M1. Thus M1 = y1R+M1 because y1R+M1 is
a simple R/I-module. Hence y1 ∈M1.

Similarly, y2 ∈ M2, . . . , yn ∈ Mn. Thereby v = y1 + · · ·+ yn ∈ M1 ⊕ · · · ⊕Mn, and thus
v ∈M . Hence `V (I) ⊆M . Therefore `V (I) = M . So V = M ⊕W .

Next, we show that
(⊕i∈ΛKi)R ≤WR ≤ E(RR)(Λ).

For this, we first prove that W is torsion-free. Say w ∈ W ≤ E(M) ⊕ E(RR)(Λ). Then
w = xw + yw ∈ E(M) ⊕ E(RR)(Λ) such that xw ∈ E(M) and yw ∈ E(RR)(Λ). Let
f : WR → E(RR)(Λ) be defined by f(w) = yw for w ∈W . Since M∩W = 0, E(M)∩W = 0.
So f is an R-module monomorphism. Thus W is torsion-free.

Now we take 0 6= a ∈ I. Because M ⊕ (⊕i∈ΛKi) ⊆ M ⊕W ⊆ E(M) ⊕ E(RR)(Λ), it
follows that (M ⊕ (⊕i∈ΛKi))a ⊆ (M ⊕W )a, and thus (⊕i∈ΛKi)a ⊆ Wa since `V (I) = M .
First for ((⊕i∈ΛKi)a)R ≤ess (Wa)R, let 0 6= wa ∈Wa. Then, as M⊕(⊕i∈ΛKi) ≤ess M⊕W
and wa ∈Wa ⊆W , there is b ∈ R such that 0 6= wab ∈M ⊕ (⊕i∈ΛKi).

Say wab = u+η ∈M ⊕ (⊕i∈ΛKi) with u ∈M and η ∈ ⊕i∈ΛKi. Note that 0 6= wab ∈W ,
W is torsion-free, and a 6= 0. Hence 0 6= (wab)a = ηa ∈ (⊕i∈ΛKi)a. Therefore we have
((⊕i∈ΛKi)a)R ≤ess (Wa)R.

We notice that 0 6= ((⊕i∈ΛKi)a)R ≤ (⊕i∈ΛKi)R and 0 6= (Wa)R ≤ WR, obviously
((⊕i∈ΛKi)a)R ≤ess (⊕i∈ΛKi)R and (Wa)R ≤ess WR. Hence it follows that

E(RR)(Λ) = E[(⊕i∈ΛKi)R] = E[((⊕i∈ΛKi)a)R] = E[(Wa)R] = E(WR).

Therefore W ≤ E(RR)(Λ).

To verify (⊕i∈ΛKi)R ≤ WR, let ξ ∈ ⊕i∈ΛKi ⊆M ⊕ (⊕i∈ΛKi) ⊆ M ⊕W . Now we write
ξ = τ + ω ∈ M ⊕W with τ ∈ M and ω ∈ W . Take 0 6= a ∈ I. Then ξa = τa + ωa = ωa
because M = `V (I). Therefore (ξ − ω)a = 0.

Note that ξ ∈ ⊕i∈ΛKi ≤ E(RR)(Λ), ω ∈ W ≤ E(RR)(Λ), and E(RR) is the field of
fractions of R. Thus we obtain ξ − ω = 0, and hence ξ = ω ∈ W . Therefore ⊕i∈ΛKi ≤ W .
As a consequence, (⊕i∈ΛKi) ≤W ≤ E(RR)(Λ) = E[(⊕i∈ΛKi)R].

Let N ∈ {M(1,α),M(2,β), . . . ,M(s,γ) | α ∈ Γ1, β ∈ Γ2, . . . , γ ∈ Γs}. Assume on the
contrary that HomR(W,N) 6= 0. Take 0 6= f ∈ HomR(W,N). Since N is simple, f is onto.
Let φ : N ⊕W → N ⊕W be defined by φ(n,w) = (f(w), 0) for (n,w) ∈ N ⊕W . Then
Ker(φ) = N ⊕Ker(f) ⊆ N ⊕W .

As Ker(f) 6= W , Ker(φ) = N ⊕Ker(f) � N ⊕W . Since N ⊕W ≤⊕ V = M ⊕W and V
is Baer, N ⊕W is Baer by Lemma 2.4(ii). Thus N ⊕W = Ker(φ)⊕ U = N ⊕Ker(f)⊕ U
for some U ≤ N ⊕W .

Define h : W → Ker(f) ⊕ U by h(w) = x + u, where w ∈ W and w = n + x + u
with n ∈ N, x ∈ Ker(f), and u ∈ U . Then h is an R-module isomorphism. Next, we let
π : Ker(f)⊕ U → U be π(x+ u) = u, where x ∈ Ker(f) and u ∈ U . Put g = π ◦ h.
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Say w ∈ Ker(g) with w = n + x + u ∈ N ⊕ Ker(f) ⊕ U , where n ∈ N, x ∈ Ker(f), and
u ∈ U . Then

0 = π(h(w)) = π(x+ u) = u, so w = n+ x+ u = n+ x.

Hence w−x = n ∈W ∩N = 0, thus w = x ∈ Ker(f). Conversely, suppose that x ∈ Ker(f).
Then g(x) = π(h(x)) = π(x) = 0, so x ∈ Ker(g). Therefore Ker(f) = Ker(g).

Since g : W → U is onto, W/Ker(g) ∼= U . On the other hand, W/Ker(f) ∼= N because
f 6= 0 is onto. Therefore

N ∼= W/Ker(f) = W/Ker(g) ∼= U.

Note that UI = 0 as NI = 0. Recall that h : W → Ker(f)⊕U is an R-module isomorphism.
So W ∼= Ker(f) ⊕ U . Thus U is torsion-free, hence U = 0, and so W/Ker(f) ∼= U = 0.
Therefore W = Ker(f), a contradiction. Thus HomR(W,N) = 0.

Consequently, for any N ∈ {M(1,α),M(2,β), . . . ,M(s,γ) | α ∈ Γ1, β ∈ Γ2, . . . , γ ∈ Γs},
we have that HomR(W,N) = 0. For k, 1 ≤ k ≤ s, we note by [27, Theorem 2.6, p.31]
that (HomR(W,

∏
α∈Γk

M(k, α)),+) ∼= (
∏
α∈Γk

HomR(W,M(k,α)),+), and by the preceding

argument HomR(W,M(k,α)) = 0 for each α ∈ Γk. Therefore HomR(W,
∏
α∈Γk

M(k,α)) = 0.

Because HomR(W,Hk) = HomR(W, ⊕α∈Γk
Mk, α)) ⊆ HomR(W,

∏
α∈Γk

M(k,α)), we obtain

HomR(W,Hk) = 0 for each k, 1 ≤ k ≤ s. Hence HomR(W,M) = HomR(W,⊕sk=1Hk) = 0
from [27, Theorem 2.6, p.31]. This proves that (ii) holds.

(ii)⇒(i) For any N ∈ {M(1,α),M(2,β), . . . ,M(s,γ) | α ∈ Γ1, β ∈ Γ2, . . . , γ ∈ Γs}, we
can check that HomR(N,W ) = 0. Indeed, say N = M(1, α)

∼= R/P1 as R-modules. Let
h ∈ HomR(R/P1,W ) and say h(1 + P1) = w ∈W . Take 0 6= a ∈ I. Then we see that

0 = h(a+ P1) = h(1 + P1)a = wa.

Since W is torsion-free, w = 0 and thus h = 0. Therefore HomR(R/P1,W ) = 0, hence
HomR(N,W ) = 0. So HomR(M,W ) = 0 from [27, Theorem 2.4, p.30]. By hypothesis,
HomR(W,M) = 0. Thus M and W are relatively Rickart.

Now W is a Baer module by assumption. Because M is semisimple, M is a Baer module
and W is M -injective. Therefore V = M ⊕W is a Baer module by Lemma 2.5. �

Recall from [8, p.112] that a module M is said to be Σ-injective if M (Λ) is injective for
any set Λ. By [8, Exercise 20.4C(d), pp.114–115], a ring R is right Goldie if and only if
E(RR) is Σ-injective.

Corollary 2.7. Let R be a commutative domain, which is not a field. Let M be a nonzero
semisimple artinian R-module. Say {Ki | i ∈ Λ} is a nonempty set of nonzero submodules
of FR, where F is the field of fractions of R. Assume that VR is an essential extension of
MR ⊕ (⊕i∈ΛKi)R. Then the following are equivalent.

(i) V is a Baer module.
(ii) (1) V = M ⊕W for some Baer essential extension W of (⊕i∈ΛKi)R.

(2) HomR(W,M) = 0.

Proof. (i)⇒(ii) Assume that V is a Baer module. Let M = ⊕ni=1Mi, where each Mi is a
simple module. Let Pi = AnnR(Mi) and I = ∩ni=1Pi. Then I = AnnR(M) and I 6= 0. For
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each a ∈ I, we define ϕa : V → V by ϕa(v) = va for v ∈ V . Then ϕa ∈ EndR(V ). Since
V is a Baer module, Ker(ϕa) ≤⊕ V from Lemma 2.4(i). Hence `V (I) = ∩a∈IKer(ϕa) ≤⊕ V
by the SSIP (see Lemma 2.4(i)), and thus V = `V (I) ⊕W for some W ≤ V . Now as in
the proof of Theorem 2.6, `V (I) = M . Therefore we obtain V = M ⊕W for some W ≤ V .
Note that E(M) = ⊕ni=1E(Mi).

As E(RR) = F is a field, so R is right Goldie and thus E(RR) is Σ-injective. Hence
E(RR)(Λ) is injective. Since (⊕i∈ΛKi)R ≤ess E(RR)(Λ) and E(RR)(Λ) is injective, we see
that E(⊕i∈ΛKiR) = E(RR)(Λ). The remaining part of the proof follows from the proof of
Theorem 2.6.

(ii)⇒(i) The proof is similar to the proof of (ii)⇔(i) in the proof of Theorem 2.6. �

Let R be a commutative domain with the field of fractions F . A submodule K of FR is
called a fractional ideal of R if rK ⊆ R for some 0 6= r ∈ R. Thus KR

∼= (rK)R and rK is
an ideal of R. We note that any ideal of R is a fractional ideal.

For a fractional ideal K of R, we put K−1 = {q ∈ F | qK ⊆ R}, which is called the inverse
of K. We say that a fractional ideal K is invertible if KK−1 = R. It is well-known that for
a nonzero ideal I of a commutative domain R, IR is projective if and only if II−1 = R. In
this case, IR is finitely generated and I−1 is a fractional ideal of R.

Recall that a commutative domain R is a Dedekind domain if and only if R is hereditary.
Thus for each nonzero ideal I of a Dedekind domain R, it follows that II−1 = R because IR
is projective. Furthermore, every nonzero fractional ideal of a Dedekind domain is invertible.

We note that a Dedekind domain is noetherian because every ideal is projective (hence
every ideal is finitely generated) (see [14, p.37] and [30, Chapter 6] for more details on
Dedekind domains).

Assume that I is an invertible ideal of a commutative domain R. Then we let I−2 =
I−1I−1, I−3 = I−1I−1I−1, and so on. For convenience, we put I0 = R.

Lemma 2.8. Assume that R is a Dedekind domain. Then:
(i) For nonzero ideals I1, I2 . . . , In of R, (I1I2 · · · In)−1 = I−1

n · · · I−1
2 I−1

1 .
(ii) For a nonzero ideal I of R and a positive integer n, I−n = (In)−1.

Proof. (i) Let I and J be nonzero ideals of R. Then IJ is also a nonzero ideal of R.
Thus I, J , and IJ are invertible since R is a Dedekind domain. Say q ∈ (IJ)−1. Then
qIJ ⊆ R, so qI ⊆ J−1. Hence qII−1 ⊆ J−1I−1. As II−1 = R, qR ⊆ J−1I−1 and thus
q ∈ J−1I−1. Conversely, let k ∈ J−1I−1. Then k = x1y1+· · ·+x`y`, where x1, . . . , x` ∈ J−1

and y1, . . . , y` ∈ I−1. Thus kIJ = (x1y1 + · · · + x`y`)IJ ⊆ x1Jy1I + · · · + x`Jy`I ⊆ R, so
k ∈ (IJ)−1. Therefore (IJ)−1 = J−1I−1. Inductively, (I1I2 · · · In)−1 = I−1

n · · · I−1
2 I−1

1 .

(ii) By (i), this is evident. �

Lemma 2.9. Assume that R is a Dedekind domain and I is a nonzero ideal of R. Let
A =

∑
`≥0 I

−`. Then we have the following.

(i) A = R[q1, q2, . . . , qn], where 1 =
∑n
i=1 riqi for some ri ∈ I and qi ∈ I−1 with 1 ≤ i ≤ n.

(ii) A is a Dedekind domain.

Proof. (i) Let F be the field of fractions of R. Say I is a nonzero ideal of R. Then I is
invertible, and thus II−1 = R. Hence there exist r1, r2, . . . , rn ∈ I and q1, q2, . . . , qn ∈ I−1

such that 1 =
∑n
i=1 riqi. Further,

∑n
i=1 qiR ⊆ I−1. Next, take q ∈ I−1. Then qI ⊆ R.
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Because 1 =
∑n
i=1 riqi and qri ∈ qI ⊆ R for each i, we obtain that

q = q(

n∑
i=1

riqi) =

n∑
i=1

qi(qri) ∈
n∑
i=1

qiR.

Hence I−1 ⊆
∑n
i=1 qiR. Consequently, I−1 =

∑n
i=1 qiR. Now we observe that

I−2 = I−1I−1 = (

n∑
i=1

qiR)(

n∑
j=1

qjR) =

n∑
i,j=1

qiqjR,

and so on. Therefore, A =
∑
`≥0 I

−` = R[q1, q2, . . . , qn] since I0 = R.

(ii) Note that A = R[q1, q2, . . . , qn] is a noetherian ring since R is noetherian. As R is
Dedekind (hence R is Prüfer) and A is an intermediate ring between R and F , the domain
A is Prüfer. Therefore A is a Dedekind domain because A is noetherian. �

For a ring R and a nonempty set Λ, we use CFMΛ(R) to denote the Λ×Λ column finite
matrix ring over the ring R.

Lemma 2.10. Let R be a commutative domain with the field of fractions F . Assume
that A is an intermediate domain between R and F . Then A

(Λ)
R is quasi-retractable for any

nonempty set Λ.

Proof. Assume that Λ is a nonempty set. We put M = A
(Λ)
R . Then it follows that S :=

EndR(M) = EndR(A(Λ)). We show that S = EndA(A(Λ)) = CFMΛ(A). For this, first note
that EndA(A(Λ)) ⊆ S. Next, we let f ∈ S. Assume on the contrary that f 6∈ EndA(A(Λ)).
Then there exist y ∈ A(Λ) and q ∈ A such that f(yq)− f(y)q 6= 0.

Put q = ac−1, where a, c ∈ R and c 6= 0. Since A(Λ) is a torsion-free R-module, so

0 6= (f(yq)− f(y)q)c = f(yq)c− f(y)a = f(yqc)− f(ya) = f(ya)− f(ya) = 0,

which is a contradiction. Therefore f ∈ EndA(A(Λ)). Hence S = EndA(A(Λ)) = CFMΛ(A).

If |Λ| = 1, clearly AR is quasi-retractable because RR ≤ AR ≤ FR and A is an interme-
diate domain between R and F .

Next consider when |Λ| = 3. Our method for the case when |Λ| = 3 can be applied to

general case. We show that M = A
(3)
R is quasi-retractable. For this, let I be a left ideal of

S = Mat3(A). Say

0 6= m =

 q1

q2

q3

 ∈ rM (I).

Let eij be the matrix in S = Mat3(A) with 1 in the (i, j)-position and 0 elsewhere. Put

0 6= s = q1e11 + q2e21 + q3e31 ∈ Mat3(A) = S.

Now take [fij ] ∈ I. Then [fij ]m = 0. Hence fi1q1 + fi2q2 + fi3q3 = 0, for 1 ≤ i ≤ 3.

So [fij ]s = 0 for all [fij ] ∈ I, and thus 0 6= s ∈ rS(I). As a consequence, M = A
(3)
R is

quasi-retractable. �
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Definition 2.11. Let MR be a module. We fix an injective hull E(MR) of MR. Let M be
a class of modules. We call, when it exists, a module HR the M hull of MR if HR is the
smallest extension of MR in E(MR) that belongs to M. In particular, we denote the Baer
hull of a module M by B(M) when it exists (see also [4, Definition 8.4.1, p.310]).

Lemma 2.12. ([30, Theorem 6.11, p.171]) Let R be a Dedekind domain and M an R-
module with nonzero annihilator in R. Then there exists a unique family {Pi, ni}i∈Γ such
that:

(i) The Pi are maximal ideals of R and these are only finitely many distinct ones.

(ii) {ni | i ∈ Γ} is a bounded family of positive integers.

(iii) M ∼= ⊕i∈Γ(R/Pni
i ) as R-modules.

Let R be a Dedekind domain and N an R-module. Say t(N) is the torsion submodule of
N . Suppose that N/t(N) is finitely generated as an R-module. Since N/t(N) is torsion-free,
N/t(N) ∼= (⊕mj=1Kj) (as R-modules) for some fractional ideals Kj , 1 ≤ j ≤ m, of R from
[30, Theorem 6.16, p.177] (see also Lemma 2.16). So N/t(N) is projective, and hence we
have that N ∼= t(N)⊕N/t(N) ∼= t(N)⊕ (⊕mj=1Kj) as R-modules.

Our next result provides a complete characterization for the existence of the Baer hull of
a module N when N/t(N) is finitely generated and AnnR(t(N)) 6= 0 (see Theorem 2.16).
Furthermore, we describe the Baer hull of N explicitly in this case.

Theorem 2.13. Let R be a Dedekind domain. Assume that M is an R-module with
nonzero annihilator in R, and {K1,K2, . . . ,Km} is a finite set of nonzero fractional ideals
of R. Then the following are equivalent.

(i) MR ⊕ (⊕mi=1Ki)R has a Baer hull.

(ii) MR is semisimple.

(iii) MR ⊕ (⊕mi=1Ki)R has a Baer essential extension.

In this case, B(MR ⊕ (⊕mi=1Ki)R) = MR ⊕ (⊕mi=1KiA)R, where A =
∑
`≥0 I

−` with

I = AnnR(M). Furthermore, A = R[q1, q2, . . . , qn], where 1 =
∑n
i=1 riqi with ri ∈ I and

qi ∈ I−1, 1 ≤ i ≤ n.

Proof. Since AnnR(M) 6= 0, there is a unique family {Pi, ni}i∈Γ satisfying (i), (ii), and
(iii) of Lemma 2.12. So M ∼= ⊕i∈Γ(R/Pni

i ) as R-modules.

(i)⇒(ii) Assume that MR ⊕ (⊕mj=1Kj)R has a Baer hull. Put T = ⊕i∈Γ(R/Pni
i ). Then

MR
∼= TR. So TR ⊕ (⊕mj=1Kj)R has a Baer hull, say VR. To show that M is semisimple, we

need to prove that T is semisimple.

First, if T = 0, then we are done. So assume that T 6= 0. We put I = AnnR(M). Then
I 6= 0 by assumption, and I = AnnR(T ). From the proof of Theorem 2.6, V = `V (I) ⊕W
for some W ≤ V as V is Baer and I is finitely generated. Since V is Baer, so is `V (I) by
Lemma 2.4(ii).

Say {P1, P2, . . . , Ps} is the set of all distinct maximal ideals in {Pi | i ∈ Γ}. We put
J = P1P2 · · ·Ps. Since I ⊆ J , `V (J) ⊆ `V (I). Put J = a1R + a2R + · · · + anR. For each
i, 1 ≤ i ≤ n, define fi : `V (I)→ `V (I) by fi(v) = vai, where v ∈ `V (I). Then we have that
`V (J) = ∩ni=1Ker(fi) ≤⊕ `V (I) by Lemma 2.4(i).

By the proof of Theorem 2.6, `V (I) ⊆ E(TR), and T = `V (I). Assume on the contrary
that T is not semisimple. Then there exists ni (i ∈ Γ) with ni ≥ 2. Let Γ1 = {i ∈ Γ | ni ≥ 2}
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and Γ2 = {i ∈ Γ | ni = 1}. Then Γ1 6= ∅.
Now we put

U = (⊕i∈Γ1P
ni−1
i /Pni

i )⊕ (⊕i∈Γ2R/P
ni
i ) ⊆ `V (J).

Then U ≤ess T . For this, say n1 ≥ 2. To show that (Pn1−1
1 /Pn1

1 )R ≤ess (R/Pn1)R, we
take 0 6= (B/Pn1

1 )R ≤ (R/Pn1)R. Then (B/Pn1
1 )R/Pn1

1
≤ (R/Pn1

1 )R/Pn1
1

. So B/Pn1
1 is a

nonzero ideal of R/Pn1
1 , hence B is a nonzero ideal of R containing Pn1

1 properly.

Note that as R is a Dedekind domain, every nonzero prime ideal of R is maximal. Also
since R is a Dedekind domain, B is a unique finite product of prime ideals. Now we put
B = Q1 · · ·Qm with each Qi a nonzero prime ideal. As Pn1

1 ⊆ B = Q1 · · ·Qm, Pn1
1 ⊆ Qi

for any i, 1 ≤ i ≤ m. So P1 ⊆ Qi and hence P1 = Qi for any i, 1 ≤ i ≤ m. There-
fore B = Q1 · · ·Qm = Pm1 with m ≤ n1 − 1 as B properly contains Pn1

1 . Consequently,

(Pn1−1
1 /Pn1

1 )R ≤ess (R/Pn1
1 )R. Similarly, (Pni−1

i /Pni
i )R ≤ess (R/Pni

i )R for each i ∈ Γ1.
Therefore

(⊕i∈Γ1
Pni−1
i /Pni

i )R ≤ess (⊕i∈Γ1
R/Pni

i )R.

So, we see that U ≤ess T .

Hence, by the preceding argument, U ≤ess T = `V (I) and thus U ≤ess `V (I). Because
U ≤ `V (J) ≤ `V (I), we have `V (J) ≤ess `V (I). Hence `V (J) = `V (I) as `V (J) ≤⊕ `V (I).

Let k ∈ Γ1. Then nk ≥ 2. Note that R/Pnk

k ⊆ `V (I) = `V (J). So P1 · · ·Pk · · ·Ps ⊆ Pnk

k ,

thus P−1
k P1 · · ·Pk · · ·Ps ⊆ P−1

k Pnk

k . Hence P1 · · ·Pk−1Pk+1 · · ·Ps ⊆ Pnk−1
k . Since nk ≥ 2,

Pi = Pk for some Pi ∈ {P1, . . . , Pk−1, Pk+1, . . . , Ps}, which is a contradiction. Therefore T
is semisimple, hence M is semisimple.

(ii)⇒(i) Case 1. M 6= 0 and m ≥ 1. Since M is semisimple and AnnR(M) 6= 0, M has
only a finite number of homogeneous components by Lemma 2.12, say {Hk | 1 ≤ k ≤ s}. For
each k, 1 ≤ k ≤ s, there exists a nonempty set Γk such that Hk = ⊕α∈Γk

M(k,α) with each
M(k,α) simple. Thus Pk := AnnR(Hk) = AnnR(M(k,α)) for all α ∈ Γk. So Pk, 1 ≤ k ≤ s,
are distinct maximal ideals of R, and I := AnnR(M) = ∩si=1Pi.

Assume that V is a Baer essential extension of MR ⊕ (⊕mi=1Ki)R. From Theorem 2.6,

V = M⊕W with W ≤ V , (⊕mi=1Ki)R ≤WR ≤ E(R
(m)
R ), and W is Baer. Also, by Theorem

2.6, HomR(W,M) = 0, so HomR(W,M(k,α)) = 0 for k, 1 ≤ k ≤ s and each α ∈ Γk.

Since M(1,α)
∼= R/P1 as R-modules for each α ∈ Γ1, we have HomR(W,R/P1) = 0. From

the exact sequence 0→WP1 →W →W/WP1 → 0, we obtain the following exact sequence

(*) 0→ HomR(W/WP1, R/P1)→ HomR(W,R/P1)→ HomR(WP1, R/P1)

as HomR(−, R/P1) is a left exact contravariant functor (see [27, Theorem 2.9, p.35]). Be-
cause HomR(W,R/P1) = 0, we have that HomR(W/WP1, R/P1) = 0 from the preceding
exact sequence (∗). We notice that W/WP1 is an R/P1-module, which is induced from the
R-module structure of W/WP1.

Further, HomR/P1
(W/WP1, R/P1) = HomR(W/WP1, R/P1) = 0. Since R/P1 is a field,

W/WP1 is a vector space overR/P1. ThereforeW/WP1 = 0, and thusW = WP1. Similarly,
W = WPk for k, 2 ≤ k ≤ s. Because each Pi, 1 ≤ i ≤ s, is maximal and R is commutative,
I = ∩si=1Pi = P1P2 · · ·Ps (also, see [30, Lemma 6.12, p.173]). So WI = WP1P2 · · ·Ps = W
and hence WI` = W for each nonnegative integer `.
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Consider the case when m = 2. Then (K1 ⊕ K2)R ≤ WR ≤ E(RR) ⊕ E(RR). We let
J = I`, where ` is a nonnegative integer. Then W = WJ . We now take k ∈ K1. Then we
have that (k, 0) ∈ K1 ⊕K2 ⊆ W = WJ . Hence there exists a positive integer n such that
(k, 0) =

∑n
i=1 wiai, where wi ∈W and ai ∈ J for i, 1 ≤ i ≤ n.

Put wi = (xi, yi) ∈ E(RR)(2) for i, 1 ≤ i ≤ n. Then (k, 0) = (
∑n
i=1 xiai,

∑n
i=1 yiai).

So we have k =
∑n
i=1 xiai and 0 =

∑n
i=1 yiai. Take q ∈ J−1. Then kq =

∑n
i=1 xiqai and

0 =
∑n
i=1 yiqai. Since each ai ∈ J and qJ ⊆ R, each qai ∈ R. So

(kq, 0) = (

n∑
i=1

xiqai,

n∑
i=1

yiqai) =

n∑
i=1

(xi, yi)qai =

n∑
i=1

wiqai.

Hence (kq, 0) ∈
∑n
i=1 wiR ⊆ W . Therefore (K1J

−1, 0) ⊆ W . By Lemma 2.8, J−1 = I−`.
Thus (K1I

−`, 0) ⊆W for all nonnegative integers `. Thus (K1A, 0) ⊆W .

Similarly, (0, K2A) ⊆ W . So K1A ⊕ K2A ⊆ W . In general, as (⊕mi=1Ki)R ≤ WR, we
obtain ⊕mi=1KiA ⊆W by applying the preceding method.

Since K1 is a fractional ideal, there exists 0 6= r1 ∈ R such that r1K1 ⊆ R. Put I1 = r1K1.
Then I1 ∼= K1 as R-modules. As R is a Dedekind domain, I1 is a finitely generated projective

R-module. So I1R is isomorphic to a direct summand of R
(h1)
R for some positive integer h1.

Hence I1⊗RAR is isomorphic to a direct summand of R(h1)⊗RAR ∼= (R⊗RA)
(h1)
R
∼= A

(h1)
R .

We note that RA is torsion-free. So RA is flat by [27, Theorem 4.33, p.129] since R is a
Dedekind domain. Thus I1 ⊗R A is embedded in R⊗R A. By definition of tensor product,
the map f : I1 ⊗R AR → I1AR defined by f(

∑t
i=1 xi ⊗ ai) =

∑t
i=1 xiai, for xi ∈ I1 and

ai ∈ A, 1 ≤ i ≤ t, is well-defined. Further, to show that f is an R-module isomorphism,
suppose that

∑t
i=1 xiai = 0 with xi ∈ I1 and ai ∈ A, 1 ≤ i ≤ t. Note that

∑t
i=1 xi ⊗ ai in

I1⊗RA can be considered as an element in R⊗RA because I1⊗RA is embedded in R⊗RA.
Hence

t∑
i=1

xi ⊗ ai =

t∑
i=1

1⊗ xiai = 1⊗ (

t∑
i=1

xiai) = 1⊗ 0 = 0.

Thus f is an R-module isomorphism.

Because I1 ⊗R AR is isomorphic to a direct summand of A
(h1)
R , I1AR is also isomorphic

to a direct summand of A
(h1)
R . Similarly, for each i, we see that IiAR is isomorphic to a

direct summand of A
(hi)
R for some positive integer hi. We put h = h1 +h2 + · · ·+hm. Then

(⊕mi=1IiA)R is isomorphic to a direct summand of A
(h)
R . Furthermore, (KiA)R ∼= (IiA)R for

each i. Thus (⊕mi=1KiA)R is isomorphic to a direct summand of A
(h)
R .

As A is a Dedekind domain by Lemma 2.9, EndR(A
(h)
R ) = Math(EndR(A)) = Math(A)

is a Baer ring from [16, Corollary 3.7] or [4, Theorem 6.1.4, p.191]. By Lemma 2.10,

A
(h)
R is a quasi-retractable module. Hence Lemma 2.3 yields that A

(h)
R is a Baer module.

Consequently, (⊕mi=1KiA)R is a Baer module by Lemma 2.4(ii).

Now we show that HomR(⊕mi=1KiA,M) = 0. Let f ∈ HomR(KiA,M). Since R is a
Dedekind domain, R = I−1I. Because MI = 0, we obtain

f(KiI
−`) = f(KiI

−`I−1I) = f(KiI
−`I−1)I = 0.
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So we obtain f(KiA) = 0. Therefore f = 0, and hence HomR(KiA,M) = 0 for each i. We
note that (HomR(⊕i∈ΛKiA,M),+) ∼= (

∏
i∈Λ HomR(KiA,M),+) from [27, Theorem 2.4,

p.30], thus HomR(⊕i∈ΛKiA,M) = 0. Therefore MR ⊕ (⊕mi=1KiA)R is a Baer module from
Theorem 2.6. Furthermore, MR⊕(⊕mi=1KiA)R ≤MR⊕WR = VR. Hence MR⊕(⊕mi=1KiA)R
is the Baer hull of MR ⊕ (⊕mi=1Ki)R.

Case 2. M 6= 0 and m = 0. Since M is semisimple, M is Baer and so M itself is the
Baer hull of M . In this case, M ⊕ (⊕mi=1KiA) = M .

Case 3. M = 0 and m ≥ 1. By the preceding argument, each Ki is finitely gener-
ated projective as an R-module, hence ⊕mi=1Ki is a finitely generated projective R-module.

So ⊕mi=1Ki is isomorphic to a direct summand of R
(h)
R for some positive integer h. Now

Math(R) = EndR(R(h)) is a Baer ring since R is Dedekind (see [16, Corollary 3.7] or [4,

Theorem 6.1.4, p.191]). Thus R
(h)
R is a Baer module from Lemma 2.3 because R

(h)
R is

quasi-retractable (from Lemma 2.10).
As a consequence, ⊕mi=1Ki is Baer by Lemma 2.4(ii) since it is isomorphic to a direct

summand of R
(h)
R . So ⊕mi=1Ki itself is the Baer hull of ⊕mi=1Ki. As AnnR(M) = R, we see

that A =
∑
`≥0R

−` = R, and hence ⊕mi=1(KiA) = ⊕mi=1Ki.

(i)⇒(iii) is clear. For (iii)⇒(ii), say V is a Baer essential extension of MR ⊕ (⊕mi=1Ki)R.
Put I = AnnR(M) 6= 0. Assume that M 6= 0. From the proof of (i)⇒(ii) in Theorem 2.6,
`V (I) = M . So we can verify that M is semisimple as in the proof of (i)⇒(ii). If M = 0,
then we are done.

Finally, from the proof of Lemma 2.9, A = R[q1, q2, . . . , qn], where 1 =
∑n
i=1 riqi with

ri ∈ I and qi ∈ I−1, 1 ≤ i ≤ n. �

Remark 2.14. From the proof of Theorem 2.13, we notice the following does hold true:
Let R be a PI-ring and W a right R-module. Assume that M is a simple right R-module.
Then HomR(W,M) = 0 if and only if WP = W , where P = AnnR(M).

In fact, since P is a right primitive ideal of R, R/P is a primitive PI-ring. Therefore,
due to Kaplansky’s result, the ring R/P is simple artinian [28, Theorem 1.5.16, p.36]. If
HomR(W,M) = 0, then HomR(W/WP,M) = 0 and hence HomR/P (W/WP,M) = 0 as in
the proof of Theorem 2.13. Since M is simple and the ring R/P is simple artinian, W/WP =
0 and hence W = WP . Conversely, if W = WP , then f(W ) = f(WP ) = f(W )P = 0, for
all f ∈ HomR(W,M), because MP = 0. Hence f = 0, so HomR(W,M) = 0.

The following is a restatement of Theorem 2.13 for the Baer hull of a module N over a
Dedekind domain for the case when N/t(N) is finitely generated and AnnR(t(N)) 6= 0.

Theorem 2.15. Let R be a Dedekind domain. Assume that N is an R-module with N/t(N)
finitely generated and AnnR(t(N)) 6= 0. Then the following are equivalent.

(i) N has a Baer hull.
(ii) t(N) is semisimple.
(iii) N has a Baer essential extension.

The next lemma details the structure of finitely generated modules over a Dedekind
domain.

Lemma 2.16. ([30, Theorem 6.16, p.177]) Let R be a Dedekind domain and N a finitely
generated R-module. Then there exist positive integers n1, n2, . . . , nk (k is a nonnegative in-
teger), nonzero maximal ideals P1, P2, . . . , Pk, and nonzero fractional ideals K1,K2, . . . ,Km
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(m is a nonnegative integer) of R such that N ∼= (⊕ki=1R/P
ni
i )⊕ (⊕mj=1Kj) as R-modules.

Our next corollary extends [24, Proposition 2.19 and Remark 2.20] to the case of Dedekind
domains.

Corollary 2.17. Let R be a Dedekind domain and N be a finitely generated R-module.
Then the following are equivalent.

(i) N is Baer.

(ii) N is semisimple or N is torsion-free.

Proof. (i)⇒(ii) Let N be Baer. From Lemma 2.16, AnnR(t(N)) 6= 0. Since N itself is
the Baer hull of N , t(N) is semisimple by Theorem 2.15. Therefore Lemma 2.16 yields that
N ∼= (⊕ki=1R/Pi) ⊕ (⊕mj=1Kj), where k and m are nonnegative integers, P1, P2, . . . , Pk are
maximal ideals (may not be distinct), and K1,K2, . . . ,Km are nonzero fractional ideals.

Suppose that k 6= 0 and m 6= 0. Since N is Baer, HomR(⊕mj=1Kj ,⊕ki=1R/Pi) = 0 from
Theorem 2.6. Hence HomR(K1, R/P1) = 0. As in the proof of Theorem 2.13, K1P1 = K1

and so K−1
1 K1P1 = K−1

1 K1 = R. Thus P1 = R, a contradiction. Therefore, either k = 0 or
m = 0. So N is torsion-free or N is semisimple.

(ii)⇒(i) Assume that N is semisimple or N is torsion-free. If N is semisimple, then
obviously N is Baer. So we suppose N is torsion-free. Then N is R-module isomorphic to
a finite direct sum of nonzero fractional ideals by Lemma 2.16. As in the proof of Case 3 in
(ii)⇒(i) of Theorem 2.13, we can show that N is Baer. �

Assume that N is a finitely generated module over a Dedekind domain. If N is neither
semisimple nor torsion-free, then N is not Baer by Corollary 2.17. In the following theorem,
we characterize the existence of the Baer hull of N and a Baer essential extension of N and
describe the Baer hull of N explicitly. Recall that from Lemma 2.16, N ∼= ⊕ki=1(R/Pni

i )⊕
(⊕mj=1Kj), where Pi are nonzero maximal ideals of R and Kj are nonzero fractional ideals
of R ( where k and m are nonnegative integers).

Theorem 2.18. Let R be a Dedekind domain, and let N be a finitely generated R-module.
Then the following are equivalent.

(i) N has a Baer hull.

(ii) t(N) is semisimple.

(iii) N has a Baer essential extension.

In this case, B(NR) ∼= (⊕ki=1(R/Pni
i ))R ⊕ (⊕mi=1KiA)R, where A =

∑
`≥0 I

−` with I =

AnnR(M). Furthermore, A = R[q1, q2, . . . , qn], where 1 =
∑n
i=1 riqi with ri ∈ I and

qi ∈ I−1, 1 ≤ i ≤ n.

Proof. Note that t(N) ∼= ⊕ki=1(R/Pni
i ) as R-modules. Hence AnnR(t(N)) 6= 0, so

Theorem 2.15 yields the proof. The explicit description of the Baer hull of N follows from
Theorem 2.13. �

In the next example, we notice that conclusion of Theorem 2.13 and Theorem 2.15 do
not hold when R is noetherian domain, in general.

Example 2.19. (see also [4, Example 8.4.13, p.319]) Let R = Z[x], the polynomial ring
over Z. Put N = (R ⊕ R)R. Then t(N) = 0, so t(N) is semisimple. However, N has no
Baer hull. For this, note that if N is a Baer module, then EndR(N) = Mat2(R) is a Baer
ring from Lemma 2.3. So [16, Corollary 3.7] (or [4, Theorem 6.1.4, p.191]) yields that the
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ring R = Z[x] must be Prüfer, which is a contradiction.
Let F = Q(x), the field of fractions of R. Note that E(N) = F⊕F. Put U = F⊕R. Then

by [16, Theorem 2.16] (or by [4, Theorem 4.2.18, p.107]), UR is a Baer module. Similarly,
VR := (R ⊕ F )R is a Baer module. As U ∩ V = N is not Baer, N has no Baer hull. This
example exhibits a module N which is the quasi-Baer hull (of itself) but has no Baer hull.

M. Schmidmeier raised the following question recently: Does N1 ⊕N2 have a Baer hull
when modules N1 and N2 have Baer hulls? We remark that Example 2.19 gives a negative
answer to this question (see also Example 3.10).

3. Applications and Examples

In this final section, our focus is on some applications of our results. Properties of Baer
hulls are obtained and examples which illustrate our results are provided. In view of Example
3.6, infinitely generated modules over a Dedekind domain may not have Baer hulls. The
existence and description of a Baer module hull of a given finitely generated module M over
arbitrary commutative rings or domains, remains open.

We start with the following remark.

Remark 3.1. (i) In Theorem 2.13, we put A =
∑
`≥0 I

−`, where I = AnnR(M). Now we

can verify that A =
∑
P−`11 P−`22 · · ·P−`ss , where `1, `2, . . . , `s run through all nonnegative

integers. In fact, I ⊆ Pi for all i since I = P1P2 · · ·Ps. For i, 1 ≤ i ≤ s, P−1
i ⊆ I−1 and so

P−`i ⊆ I−` for every nonnegative integer `. Hence, from Lemma 2.8,

P−`11 P−`22 · · ·P−`ss ⊆ I−`1I−`2 · · · I−`s = I−(`1+`2+···+`s) ⊆ A.

Thus
∑
P−`11 P−`22 · · ·P−`ss ⊆ A, where `1, `2, . . . , `s run through all nonnegative integers.

Conversely, from Lemma 2.8, I−1 = (P1P2 · · ·Ps)−1 = P−1
1 P−1

2 · · ·P−1
s . Therefore it

follows that I−` = P−`1 P−`2 · · ·P−`s for any nonnegative integer `. Hence we obtain that

A ⊆
∑
P−`11 P−`22 · · ·P−`ss , where `1, `2, . . . , `s run through all nonnegative integers.

Consequently, A =
∑
P−`11 P−`22 · · ·P−`ss , where `1, `2, . . . , `s run through all nonnegative

integers.

(ii) Let R be a commutative PID. Assume that M is a nonzero semisimple R-module
with nonzero annihilator in R. Then from Lemma 2.12, M has only a finite number of
homogeneous components. Let {Hk | 1 ≤ k ≤ s} be the set of all homogeneous components
of M . For k, 1 ≤ k ≤ s, we put Hk = ⊕αM(k,α) with each M(k,α) simple. Therefore
M(k,α)

∼= R/pkR for k, 1 ≤ k ≤ s, with pk a nonzero prime.

We put Pk = AnnR(Hk) for k, 1 ≤ k ≤ s. Then Pk = pkR. For a nonnegative integer `,

we can routinely verify that P−`k = (1/p`k)R for k, 1 ≤ k ≤ s. Therefore,

P−`11 P−`22 · · ·P−`ss = (1/p`11 )(1/p`22 ) · · · (1/p`ss )R

for nonnegative integers `1, `2, . . . , `s.
Let A =

∑
`≥0 I

−`, where I = AnnR(M) = P1P2 · · ·Ps = p1p2 · · · psR. Then from the

preceding argument, A = R[1/p1, 1/p2, . . . , 1/ps]. Put a = p1p2 · · · ps. Thus A = R[1/a]
because I−` = (1/a`)R.

The following example illustrates Theorem 2.13 and Remark 3.1.
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Example 3.2. Say Γi, i = 1, 2, 3, are nonempty sets and m is a positive integer. By

Theorem 2.13 and Remark 3.1, the Baer hull of Z(Γ1)
2 ⊕ Z(Γ2)

3 ⊕ Z(Γ3)
5 ⊕ Z(m) is

Z(Γ1)
2 ⊕ Z(Γ2)

3 ⊕ Z(Γ3)
5 ⊕ Z[1/2, 1/3, 1/5](m) = Z(Γ1)

2 ⊕ Z(Γ2)
3 ⊕ Z(Γ3)

5 ⊕ Z[1/30](m).

We recall that a ring R is called semiprimary if R/J(R) is artinian and J(R) is nilpotent,
where J(R) is the Jacobson radical of R. It is well-known that if R is a semiprimary ring,
then R is right hereditary if and only if R is left hereditary.

Lemma 3.3. ([32, Theorem 2] and [26, Theorem 3.3]) Let R be a ring. Then the following
are equivalent.

(i) R is a semiprimary right (and left) hereditary ring.
(ii) CFMΛ(R) is a Baer ring for any nonempty set Λ.

Definition 3.4. (i) ([24, Definition 2.5]) A module MR is said to be K-nonsingular if, for
all ϕ ∈ EndR(M), Ker(ϕ)R ≤ess MR implies ϕ = 0.

(ii) ([24, Definition 2.7]) A module MR is called K-cononsingular if, for any NR ≤ MR,
`S(N) = 0 implies NR ≤ess MR, where S = EndR(M).

In [24], it is proved that every nonsingular module is K-nonsingular, but converse is not
true in general. For more details on K-nonsingular modules, see [24] and [25]. By Chatters
and Khuri in [5], a ring R is right extending and right nonsingular if and only if R is Baer
and right cononsingular.

The following shows that there are close connections between an extending module and
a Baer module.

Lemma 3.5. ([24, Theorem 2.12]) A module MR is extending and K-nonsingular if and
only if MR is Baer and K-cononsingular.

Let R be a Dedekind domain and let N be an R-module. Assume that N/t(N) is finitely
generated and AnnR(t(N)) 6= 0. In this case by Theorem 2.15, N has Baer hull if and only
if t(N) is semisimple. The following example exhibits that there exists an R-module N such
that t(N) is semisimple and AnnR(t(N)) 6= 0, but N has no Baer hull. So the assumption
“N/t(N) is finitely generated” in Theorem 2.15 is not superfluous.

Example 3.6. Let M = ⊕ni=1Zpi , where n is a positive integer, and all pi are prime integers.
Say p1, p2, . . . , ps are all the distinct prime integers in {p1, p2, . . . , pn}. Let a = p1p2 · · · ps.

Since Z[1/a] is not a field, Z[1/a] is not semiprimary because Z[1/a] is a domain. By
Lemma 3.3, there exists a nonempty set Λ such that CFMΛ(Z[1/a]) is not a Baer ring.

Furthermore, we have the following.

(i) M ⊕ Z[1/a](Λ) is not a Baer Z-module.

(ii) Let N = M ⊕ Z(Λ). Then N/t(N) is not finitely generated.

(iii) N = M ⊕ Z(Λ) has no Baer hull as a Z-module.

To prove (i), first we show that EndZ(Z[1/a](Λ)) = EndZ[1/a](Z[1/a](Λ)) by using similar
method that used in the proof of Lemma 2.10. Therefore

EndZ(Z[1/a](Λ)) = EndZ[1/a](Z[1/a](Λ)) = CFMΛ(Z[1/a]).
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Now Z[1/a](Λ) is not a Baer Z-module from Lemma 2.3 as EndZ(Z[1/a](Λ)) = CFMΛ(Z[1/a])
is not a Baer ring. By Lemma 2.4(ii), M ⊕ Z[1/a](Λ) is not a Baer Z-module.

For (ii), we prove that Λ is an infinite set. Assume on the contrary that Λ is a finite
set, say |Λ| = m, where m is a positive integer. Note that Z[1/a] is a Prüfer domain. So
EndZ(Z[1/a](Λ)) = Matm(Z[1/a]) is a Baer ring by [16, Corollary 3.7] (or [4, Theorem 6.1.4,
p.191]). Thus we get a contradiction. Therefore Λ is infinite, so N/t(N) ∼= Z(Λ) is not
finitely generated as a Z-module.

To prove (iii), for each α ∈ Λ, let Wα = ⊕i∈ΛUi, where Uα = Z[1/a] and Ui = Q for
i 6= α. First we claim that Wα is a Baer Z-module. For this, note that Z[1/a] is a nonsingular
extending Z-module and ⊕i∈Λ\{α}Ui = Q(Λ\{α}) is a nonsingular injective Z-module. Due to
G. Lee, S.T. Rizvi, and C. Roman (see [4, Theorem 4.2.18, p.107]), Wα is a Baer Z-module
for each α ∈ Λ.

Assume on the contrary that M ⊕Z(Λ) has a Baer hull, say V . As HomZ(Z[1/a],M) = 0
and HomZ(Q(Λ\{α}),M) = 0 for each α ∈ Λ, it follows that HomZ(Wα,M) = 0 from [27,
Theorem 2.4, p.30]. So M ⊕Wα is a Baer module for each α ∈ Λ by Theorem 2.6. Thus

V ⊆ ∩α∈Λ(M ⊕Wα) = M ⊕ (∩α∈ΛWα) = M ⊕ Z[1/a](Λ)

because ∩α∈ΛWα = Z[1/a](Λ).
We note that V is a Baer module and M ⊕ Z(Λ) ≤ V ≤ E(M ⊕ Z(Λ)). Hence from

Theorem 2.6, V = M⊕W such that Z(Λ) ≤W ≤ E(Z(Λ)) = Q(Λ), W is a Baer module, and
HomZ(W,M) = 0. Now put I = AnnZ(M) = aZ. As in the proof of (ii)⇒(i) for Theorem
2.13, we have that WI = W . Put A =

∑
`≥0 I

−`. Then by Remark 3.1, A = Z[1/a]. By

the method that used in the proof of (ii)⇒(i) for Theorem 2.13, A(Λ) = (ZA)(Λ) ⊆ W . So
Z[1/a](Λ) ⊆W . Hence M ⊕ Z[1/a](Λ) ≤M ⊕W = V .

Consequently, V = M ⊕ Z[1/a](Λ), and thus M ⊕ Z[1/a](Λ) is a Baer module, which is a
contradiction to (i). Hence M ⊕ Z(Λ) has no Baer hull.

Example 3.7. (i) Let V = Zp⊕Z[1/p], where p is a prime integer. Then by Theorem 2.13
and Remark 3.1, V is the Baer hull of Zp ⊕ Z as a Z-module. We note that Zp ⊕ Z is not
extending by [12, Corollary 2]. Hence in view of Lemma 3.5, one might expect that V is
also the extending hull of Zp ⊕ Z as a Z-module. But this is not true. Furthermore, V is
not even extending from [12, Corollary 2].

(ii) We remark that in the chain of Z-submodules Zp ≤ Zp2 ≤ · · · ≤ Zp∞ of Zp∞ (p a
prime integer), Zp is the Baer hull (also the quasi-injective hull) of itself and Zp∞ is the
injective hull of each of the modules in the chain. However, Zpn (n > 1) has no Baer hull.
by Theorem 2.18. Also note that Zp∞ has no Baer hull.

In Proposition 3.8 and Example 3.9, we consider the isomorphism problem for Baer hulls
as follows: Let N1 and N2 be modules with Baer hulls B(N1) and B(N2), respectively. Then
is it true that N1

∼= N2 if and only if B(N1) ∼= B(N2)?

Proposition 3.8. Let N1 and N2 are isomorphic modules. If N1 has a Baer hull B(N1),
then N2 has a Baer hull B(N2), and B(N1) ∼= B(N2) as modules.

Proof. Let σ : N1 → N2 be a module isomorphism. Then there exists a module isomor-
phism σ : E(N1)→ E(N2), which is an extension of σ. So σ(B(N1)) = B(N2). �
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The next example shows that the converse of Proposition 3.8 does not hold true. In other
words, there exist modules N1 and N2 such that B(N1) = B(N2) (hence B(N1) ∼= B(N2)
as modules), but N1 6∼= N2. Thus the isomorphism problem does not hold for the case of
Baer hulls.

Example 3.9. Let N1 = Z2 ⊕ Z3 ⊕ Z. Then by Theorem 2.13 (also see Remark 3.1),
Z2 ⊕ Z3 ⊕ Z[1/6] is the Baer hull of N1 as Z-modules.

Next, let N2 = Z2 ⊕ Z3 ⊕ Z[1/3]. Say V is a Baer module such that N2 ≤ V ≤ E(N2).
From Theorem 2.6, V = Z2 ⊕Z3 ⊕W for some Baer module W such that Z[1/3] ≤W ≤ Q
and HomZ(W, Z2⊕Z3) = 0. Thus HomZ(W, Z2) = 0, and so 2kW = W for any nonnegative
integer k as in the proof of Theorem 2.13.

Therefore 1/2k ∈ W for any positive integer k, and thus Z[1/2, 1/3] ≤ W . Hence we
obtain

Z2 ⊕ Z3 ⊕ Z[1/2, 1/3] = Z2 ⊕ Z3 ⊕ Z[1/6] ≤ V.

Because Z2 ⊕ Z3 ⊕ Z[1/6] is Baer as a Z-module, Z2 ⊕ Z3 ⊕ Z[1/6] is the Baer hull of N2.

Consequently, Z2 ⊕ Z3 ⊕ Z[1/6] is the Baer hull of both N1 and N2. However, N1 is not
isomorphic to N2 as Z-modules.

Indeed, if N1
∼= N2, then Z ∼= Z[1/3] as Z-modules. Now say g ∈ HomZ(Z, Z[1/3]) is a

Z-module isomorphism. Let g(1) = s/3n ∈ Z[1/3] with 0 6= s ∈ Z and a nonnegative integer
n. Then Z[1/3] = g(Z) = g(1)Z = (s/3n)Z. Thus 1/3n+1 = (s/3n)m for some m ∈ Z.
Hence 1 = 3sm, which is impossible. Therefore N1 6∼= N2 as Z-modules.

We conclude this paper by an example where we compare the direct sum of Baer hulls
with the Baer hull of a direct sum of modules.

Example 3.10. In Example 2.19, we provide two modules U and V such that U and V
have Baer hulls, but U ⊕ V does not have a Baer hull.

Recall that B(−) denotes the Baer hull of a module if it exists. Here, we show that there
exist two modules M and N such that M, N , and M ⊕ N have Baer hulls B(M), B(N),
and B(M ⊕N), respectively. But B(M ⊕N) 6∼= B(M)⊕B(N).

Indeed, let M = Zp (p a prime integer) and N = Z as Z-modules. Then B(M) = Zp and
B(N) = Z since Zp is a semisimple Z-module and Z is a Baer ring. Therefore we have that
B(M)⊕B(N) = Zp ⊕ Z.

On the other hand, B(M ⊕ N) = B(Zp ⊕ Z) = Zp ⊕ Z[1/p] (see Theorem 2.13 and
Remark 3.1). Hence B(M ⊕N) 6∼= B(M)⊕B(N) because Z 6∼= Z[1/p] as Z-modules by the
argument that used in Example 3.9.

Question 3.11. Let p be a prime integer. Then is Zp ⊕ Z the quasi-Baer module hull of
Zp ⊕ Z as a Z-module? (See [26] for the definition of quasi-Baer modules and Definition
2.11 for quasi-Baer module hulls.)

In a sequel to this paper, we will study Rickart module hulls and their possible description.
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