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Abstract
Cauchy’s rigidity theorem states:

If P and P’ are combinatorially equivalent convex polyhedra such that the corresponding facets of P and
P’ are congruent, then P and P’ are congruent polyhedra.

For many years it was unknown whether the same theorem was true in general for non-convex polyhedron.
In 1977, more than 160 years after the work of Cauchy, Robert Connelly discovered a polyhedron P (without self-
intersections) that allowed for a continuous deformation keeping the facets of P flat and congruent. It was soon
noticed that the volume of Connelly’s polyhedron remained constant under the flexing motion, and the same fact was
found to be true of all later-discovered flexible polyhedra. It was conjectured that this fact would hold in general, and
it came to be known as the bellows conjecture.
In 1995, Idjad Sabitov proved the bellows conjecture by showing that for any (oriented) polyhedron P, the volume
of P is a root of a polynomial depending only on the combinatorial structure and edge lengths of P. Moreover, the
coefficients of the polynomial are themselves polynomials of the squares of the lengths of the edges of P with rational
coefficients, with the coefficient polynomials depending only on the combinatorial structure of P. Hence, the volume
of a polyhedron P with combinatorial structure K is a finitely valued function of the edge lengths of P, and in this way
the theorem may be viewed as a generalization of Heron’s formula for the area of a triangle.

1 Formulas from Antiquity
Often attributed to Heron of Alexandria (though perhaps known already to Archimedes), Heron’s formula expresses
the area of a triangle as a function of the side lengths.

Heron’s Formula. Let T be a triangle with side lengths (a, b, c).

Area(T ) =
1

4

√
(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)

We all know from elementary geometry that a triangle is determined by its side lengths. With this knowledge,
Heron’s formula is, perhaps, unsurprising. For quadrilaterals, we quickly observe that the side lengths do not uniquely
determine the area, so there is no hope of finding a similar formula that holds in the same generality. However, if
we restrict to the case of cylic quadrilaterals, i.e., quadrilaterals whose vertices all lie on a common circle, then an
analogous formula does exist.

Brahmagupta’s Formula. Let Q be a cyclic quadrilateral with side lengths (a, b, c, d).

Area(Q) =
1

4

√
(a+ b+ c− d)(a+ b− c+ d)(a− b+ c+ d)(−a+ b+ c+ d)

If we let an edge of Q have length 0, we see that Heron’s Formula appears as a special case of Brahmahgupta.
It is natural to ask whether or not a similar formula exists for cyclic pentagons, hexagons, etc. Now Heron’s formula
may be easily derived using nothing more than the Pythagorean theorem, and in [3], we see that Brahmagupta’s formula
follows easily from Heron. Despite the relative ease of these first two cases, the formula for the cylic pentagon went
unknown for over 1300 years after Brahmagupta recorded his formula for the quadrilateral. In 1994 D. P. Robbins
discovered the formulas for both the cyclic pentagon and the cyclic hexagon and proved the following more general
result.

Theorem (Robbins [6]). For any natural number n, there exists a unique (up to sign) irreducible homogenous poly-
nomial f (where we regard the first argument as degree 4, the rest as degree 2) with integer coefficients such that for
any cyclic n-gon P , the edge lengths (a1, a2, . . . , an) and area K of P satisfy

f(16K2, a21, . . . , a
2
n) = 0.
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2 Simplices and Complexes [5] [8]
We will always assume k, n ∈ N.

Definition (k-Simplex). A k-simplex is the convex hull of k + 1 points (vertices) in general position in Rn(n ≥ k).

More explicitly, given k + 1 vertices v0, v1, . . . , vk ∈ Rn in general position (i.e., the set of k vectors {v1 − v0,
v2 − v0, . . . , vk − v0} is linearly independent over R), the k-simplex determined by {v0, . . . , vk} is {λ0v0 + λ1v1 +

. . .+ λkvk|λi ≥ 0, i = 0, . . . , k,

k∑
i=0

λi = 1}. A face of a simplex is the convex hull of any subset of its vertices. An

m-face is a face of dimension m, and a facet is a (k − 1)-face of a k-simplex.

Definition (Simplicial Complex). A set of simplices K is a simplicial complex if:

1. Every face of every simplex of K is in K.

2. The intersection of any two simplices of K is a face of both simplices.

The body of K is |K| =
⋃
σ∈K σ

It will be necessary to generalize the notion of the volume of a simplicial complex, and for this we will need
oriented complexes.

Definition (Oriented Simplex). Let σ be a k-simplex with a fixed ordering of its vertex set (v0, . . . , vk). The equiva-
lence class of orderings {(vτ(0), . . . , vτ(k)) | τ is an even permutation} is the orientation of σ, and σ with its class of
orderings we call an oriented simplex. The equivalence class of orderings {(vτ(0), . . . , vτ(k)) | τ is an odd permutation}
is the reverse orientation.

Given an oriented simplex σ, there is an induced orientation on the facets of σ given by the following construction.
Identify each facet with the vertex of σ that it does not contain. Select an ordering from the orientation of σ and delete
the vertex corresponding to the facet on which we wish to induce an orientaion. This ordering defines an orientation of
the facet, but we take the reverse orientation precisely when the parity of the position of the removed vertex was odd.

Definition. Two k-simplices that intersect at a (k − 1)-simplex σ are called coherently oriented if they induce the
same orientation on σ. A k-simplicial complex is orientable if there is a choice of orientation for each k-simplex such
that all pairs are coherently oriented.

3 Cayley-Menger Determinants [4]
Definition (Cayley-Menger Determinant). Let S = {v1, . . . , vk} be a set of points in Rn. Let li,j = ‖vi − vj‖, the
Euclidean distance between the points vi and vj . The Cayley-Menger determinant of S is∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1
1 l21,1 l21,2 . . . l21,k
1 l22,1 l22,2 . . . l22,k
...

...
...

. . .
...

1 l2k,1 l2k,2 . . . l2k,k

∣∣∣∣∣∣∣∣∣∣∣
Of course, li,i = 0 for each i, and li,j = lj,i for each i and j, so the matrix is symmetric with zeroes along the

diagonal. We record two important properties of the Cayley-Menger Determinant.

Property 1. Let σ be a k-simplex with vertex set S = {v0, . . . , vk}.

V 2
σ =

(−1)k+1

2k (k!)
2 det(MS)

where det(MS) is the Cayley-Menger determinant of the vertex set of σ, and Vσ is the k-dimensional volume of σ.
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Notice that this gives the volume of a k-simplex σ as a root of a polynomial in the squares of the edge lengths of
σ.

Property 2. The Cayley-Menger determinant is identically zero whenever k ≥ n+2, where k is the cardinality of the
vertex set, n the dimension of the space.

An important special case of this is that the 10 distances between 5 points in R3 are not arbitary, but must satisfy
the polynomial relation described by its Cayley-Menger determinant being identically zero.

4 Cauchy’s Rigidity Theorem and the Bellows Conjecture
We now focus our attentions on R3.

Definition. Given a simplicial 2-complex K, a polyhedron with combinatorial structure K is a continuous map
P : |K| → R3 that is linear on the simplices of K.

We will consider only the case when |K| is homeomorphic to an orientable 2-manifold of genus g ≥ 0.

Theorem (Cauchy’s Rigidity Theorem [1]). Let P and P ′ be convex polyhedra such that they are combinatorially
equivalent and corresponding facets are congruent. Then P and P ′ are congruent.

We may view Cauchy’s rigidity theorem as saying that for any convex polyhedron P , there is no continuous
deformation of P that leaves the faces of P flat and congruent. It was believed that the same would be true of all
polyhedra, so it was a surprise when Connelly presented a (non-convex) polyhdron (with no self-intersections) that
allowed such a deformation, called a flexion. As more examples were found it was soon noticed that the volumes of
the flexible polyhedra appeared to be preserved under flexions. This became known as the bellows conjecture.

(The Bellows Conjecture). Flexions are volume-preserving. (Proven in 1995 by Idjad Sabitov)

We require the following notions.
Let σ be an oriented k-simplex in Rk+1. Let O be a point of Rk+1 \σ, and form the (k+1)-simplex Oσ with vertices
from σ and O. Given an orientation of Oσ , we can define the oriented volume of Oσ by taking the negative of the
standard volume when Oσ induces the reverse orientation on σ.
Let P be a polyhedron with combinatorial structure K. |K| is homeomorphic to an orientable 2-manifold of genus
g ≥ 0, and we give it a coherent orientation. This induces an orientation onto P , and we refer to P as an oriented
polyhedron.
Let P be an oriented polyhedron with combinatorial structure K. Let O be a point of R3, and let {Oσ} be the set
of 3-simplices formed by O and the 2-simplices σ of K. The generalized volume of P is the sum of the oriented
volumes of the Oσ ′s (where we have coherently oriented the Oσ ′s). The notion does not depend on the choice of O
and coincides with the standard notion of volume when such the standard notion exists.
Sabitov proved the bellows conjecture by showing the following more general result.

Theorem (Sabitov [7]). Let P be an oriented surface in R3 having a given combinatorial structure K and given edge
lengths lk, 1 ≤ k ≤ e where e is the number of edges of P . Let P̃ denote the set of all polyhedra in R3 with the same
combinatorial structure and edge lengths as P . Then there exists a polynomial equation

Q(V ) = V 2N + a1(l)V
2N−2 + . . .+ aN (l) = 0

such that the generalized volume of any polyhedron from P̃ is a root of this equation. Moreover, the coefficients ai are
polynomials in (l) = (l21, . . . , l

2
e) with rational coefficients depending on K.

In 2011, Alexander Gaifullen proved analogous results in dimension 4 [2].

References
[1] Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK, chapter 13, pages 81–84. Springer, fourth edition,

2010.

3



[2] Alexander A. Gaifullen. Sabitov polynomials for polyhedra in four dimensions. arXiv:1108.6014v1 [math.MG]
30 Aug. 2011.

[3] Albrecht Hess. A highway from heron to brahmagupta. Forum Geometricorum, 12:191–192, 2012.

[4] D. Michelucci. Using cayley menger determinants. In In Proceedings of the 2004 ACM symposium on Solid
modeling, pages 285–290, 2003.

[5] Prerna Nadathur. An introduction to homology. University of Chicago, August 2007.

[6] David P. Robbins. Areas of polygons inscribed in a circle. Discrete Comput Geom, 12(2):223–236, 1994.

[7] I. Kh. Sabitov. The volume as a metric invariant of polyhedra. Discrete Comput Geom, 20:405–425, 1998.

[8] Afra Zomorodian. Introduction to Computational Topology, chapter 3. 2002. Lecture notes for CS 468, Stanford
University, Fall 2002.

4


