
WHAT ARE THE BERNOULLI NUMBERS?

C. D. BUENGER

Abstract. For the "What is?" seminar today we will be investigating the Bernoulli numbers. This surprising

sequence of numbers has many applications including summing powers of integers, evaluating the zeta function,

finding asymptotics of Stirling’s formula, and estimating the harmonic series. We investigate properties of these

numbers and introduce Bernoulli polynomials, a closely related topic. Then, we establish the Euler summation

formula and use the formula to provide the aforementioned applications. Furthermore, a study of the Fourier

coefficients, yields surprising results on the zeta function.

1. Introduction

Bernoulli numbers first appeared in a post humorous publication of Jakob Bernoulli (1654-1705) in 1713,

and were independently discovered by Japanese mathematician Seki Kōwa in 1712. Bernoulli observed

these numbers in the course of his investigations of sums of powers of integers. That is sums of squares,

cubes, or higher powers. Let

S p(n) =

n−1∑
k=1

kp.

We have the following closed forms of S p(n) for small p:

S 0(n) = n

S 1(n) = 1
2 n2 − 1

2 n

S 2(n) = 1
3 n3 − 1

2 n2 + 1
6 n

S 3(n) = 1
4 n4 − 1

2 n3 + 1
4 n2

S 4(n) = 1
5 n5 − 1

2 n4 + 1
3 n3 − 1

30 n

S 5(n) = 1
6 n6 − 1

2 n5 + 5
12 n4 − 1

12 n2

S 6(n) = 1
7 n7 − 1

2 n6 + 1
2 n5 − 1

6 n3 + 1
42 n

S 7(n) = 1
8 n8 − 1

2 n7 + 7
12 n6 − 7

24 n4 + 1
12 n2

S 8(n) = 1
9 n9 − 1

2 n8 + 2
3 n7 − 7

15 n5 + 2
9 n3 − 1

30 n

S 9(n) = 1
10 n10 − 1

2 n9 + 3
4 n8 − 7

10 n6 + 1
2 n4 − 3

20 n2

S 10(n) = 1
11 n11 − 1

2 n10 + 5
6 n9 − n7 + n5 − 1

2 n3 + 5
66 n
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Through slight manipulations Bernoulli arrived at the following reformulation of these sums:

S 0(n) = 1
1

(
1
0

)
n

S 1(n) = 1
2

[(
2
0

)
n2 −

(
2
1

)
1
2 n

]
S 2(n) = 1

3

[(
3
0

)
n3 −

(
3
1

)
1
2 n2 +

(
3
2

)
1
6 n

]
S 3(n) = 1

4

[(
4
0

)
n4 −

(
4
1

)
1
2 n3 +

(
4
2

)
1
6 n2

]
S 4(n) = 1

5

[(
5
0

)
n5 −

(
5
1

)
1
2 n4 +

(
5
2

)
1
6 n3 −

(
5
4

)
1
30 n

]
S 5(n) = 1

6

[(
6
0

)
n6 −

(
6
1

)
1
2 n5 +

(
6
2

)
1
6 n4 −

(
6
4

)
1

30 n2
]

S 6(n) = 1
7

[(
7
0

)
n7 −

(
7
1

)
1
2 n6 +

(
7
2

)
1
6 n5 −

(
7
4

)
1

30 n3 +
(
7
6

)
1
42 n

]
S 7(n) = 1

8

[(
8
0

)
n8 −

(
8
1

)
1
2 n7 +

(
8
2

)
1
6 12n6 −

(
8
4

)
1

30 n4 +
(
8
6

)
1

42 n2
]

S 8(n) = 1
9

[(
9
0

)
n9 −

(
9
1

)
1
2 n8 +

(
9
2

)
1
6 3n7 −

(
9
4

)
1

30 n5 +
(
9
6

)
1

42 n3 −
(
9
8

)
1

30 n
]

S 9(n) = 1
10

[(
10
0

)
n10 −

(
10
1

)
1
2 n9 +

(
10
2

)
1
6 n8 −

(
10
4

)
1
30 n6 +

(
10
6

)
1
42 n4 −

(
10
8

)
1

30 n2
]

S 10(n) = 1
11

[(
11
0

)
n11 −

(
11
1

)
1
2 n10 +

(
11
2

)
1
6 n9 −

(
11
4

)
1
30 n7 +

(
11
6

)
1
42 n5 −

(
11
8

)
1

30 n3 +
(
11
10

)
5
66 n

]
Through this reformulation we notice the repeated occurrence of certain numbers within the closed form

sums. These are the Bernoulli numbers. Here are the first few:

B0 = 1, B1 =
−1
2
, B2 =

1
6
, B3 = 0, B4 =

−1
30
, B5 = 0,

B6 =
1
42
, B7 = 0, B8 =

−1
30
, B9 = 0, B10 =

5
66
, B11 = 0.

More generally, via the Euler summation formula, we will prove that

(1) S m(n) =
1

m + 1

m∑
k=0

(
m + 1

k

)
Bk nm+1−k (Here Bk is the kth Bernoulli number).

We also achieve the results on the value of the zeta function on even integers and the asymptotics of Stirling’s

formula and the partial sums of the harmonic series through investigating the Bernoulli numbers and the

Bernoulli polynomials.

2. Definition and elementary properties

Bernoulli first discovered through studying sums of integers raised to fixed powers. This approach hinted

at above properly defines the Bernoulli numbers, but may present difficulties when trying to calculate larger

numbers in the sequence since we would first need closed forms of S p(n). Additionally, to take this as the

definition we would need to prove that the consistency of equation (1). The modern approach is to define

the Bernoulli numbers through the use of the generating function x
ex−1 and then prove formula (1).
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Definition 1. The Bernoulli numbers {Bk}
∞
k=0 are defined as the constants in the power series expansion of

the analytic function x
ex−1

x
ex − 1

=

∞∑
k=0

Bkxk

k!
.

Regarding the above equation as a formal power series, the equation

1 =

∞∑
k=0

Bkxk

k!
·

∞∑
k=0

xk

(k + 1)!

produces the equation ∑
i+ j=k

Bi

i!( j + i)!
=

1 k = 0

0 k ≥ 1.

From observing the above chart one sees that

B3 = B5 = B7 = B9 = B11 = 0.

Indeed this is true for all odd numbers larger than 2

Lemma 2.1. Let n an odd number larger than 2. Then Bn = 0.

Proof.

x
ex − 1

− B1x =
x

ex − 1
+

x
2

=
2x + x(ex − 1)

2(ex − 1)

=
x(ex + 1))
2(ex − 1)

=
x(e

x
2 + e

−x
2 ))

2(e
x
2 − e

−x
2 )

e
x
2 − e

−x
2 is odd, e

x
2 + e

−x
2 is even, and x is odd. Thus x

ex−1 − B1x is an even function. Thus the power series

expansion of x
ex−1 − B1x has no nontrivial odd terms. �

The Bernoulli numbers grow quite quickly. Indeed, we will show in section 5 that

Bk ∼
−2k!
(2πi)k (as k → ∞).

For now let us be satisfied with the fact that

B20 =
−174611

330
.

In order to achieve the results mentioned in the introduction, we will need to define the Bernoulli polynomi-

als.
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Definition 2. The Bernoulli polynomials are a sequence of polynomials {Bk(y)}∞k=0 are defined through the

power series expansion of xexy

ex−1
xexy

ex − 1
=

∞∑
k=0

Bk(y)xk

k!
.

As above we can derive a closed form for these polynomials by taking the product of the power series for
x

ex−1 and exy.
∞∑

k=0

Bk(y)xk

k!
=

xexy

ex − 1

=

∞∑
k=0

Bkxk

k!
·

∞∑
k=0

(xy)k

k!

=

∞∑
k=0

xk
∑

i+ j=k

Biy j

i! j!

Thus

Bk(y) =

k∑
i=0

(
k
i

)
Biyk−i

Here are the first few Bernoulli polynomials:

B0(y) = 1

B1(y) = y −
1
2

B2(y) = y2 − y +
1
6

B3(y) = y3 −
3
2

y2 +
1
2

y

B4(y) = y4 − 2y3 + y2 −
1
30

One may notice that for the listed polynomials B′k(y) = kBk−1(y). This holds in general!

Lemma 2.2.

B′k(y) = kBk−1(y)

Proof. Let us differentiate the defining relation for the Bernoulli polynomials with respect to y.

x2exy

ex − 1
=

∞∑
k=1

B′k(y)xk

k!
.

Divide through by x and reindex

xexy

ex − 1
=

∞∑
k=1

B′k(y)xk−1

k!

=

∞∑
k=0

B′k−1(y)xk

(k + 1)!
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Then equating the powers of x gives the desired relation. �

Additionally there are many other interesting facts concerning these polynomials. I encourage you to try

to prove the following relations:

Bk(1 − y) = (−1)kBk(y)

Bk

(
1
2

)
= (21−k − 1)Bk

Bk

(
1
4

)
= 2−kBk

(
1
2

)
(for even k)∫ 1

0
Bk(y)dy = 0 (if k ≥ 1)

Bk(y + 1) = Bk(y) + kyk−1∫ 1

0
Bk(y)Bl(y)dy = (−1)l−1 Bk+l

(k+l
k ) (if k, l ≥ 1)

Finally let us make the Bernoulli polynomials restricted to [0, 1] into periodic function defined on R with

period 1. That is

Definition 3. For k ∈ N, let

B∗k(y) := B(y − byc).

3. Euler-Maclaurin summation formula

Here we aim to prove the following summation formula which will be critical in the course of our analysis.

Theorem 3.1. Let a < b ∈ Z and let f be a smooth function on [a, b]. Then for all m ≥ 1

b−1∑
i=a

f (i) =

∫ b

a
f (x)dx +

m∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣∣∣∣
b

a

+ Rm

Where

Rm = (−1)m+1
∫ b

a

B∗m(x)
m!

f (m)(x)dx.

Proof. By the fundamental theorem of calculus,

f (x) = f (0) +

∫ x

0
f ′(t)dt

Integrating with respect to x gives us the following:∫ 1

0
f (x) = f (0) +

∫ 1

0

∫ x

0
f ′(t)dtdx

= f (0) +

∫ 1

0
f ′(t)

∫ 1

t
dxdt

= f (0) +

∫ 1

0
f ′(t)(1 − t)dt

= f (1) +

∫ 1

0
f ′(t)(−t)dt
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By adding the last two equations we find that

2
∫ 1

0
f (x)dx = f (0) + f (1) +

∫ 1

0
(1 − 2t) f ′(t)dt.

After dividing by 2 ∫ 1

0
f (x)dx =

f (0) + f (1)
2

+

∫ 1

0
(
1
2
− t) f ′(t)dt.

Through a quick manipulation we find that

f (0) =

∫ 1

0
f (x)dx +

f (0) − f (1)
2

+

∫ 1

0
(x −

1
2

) f ′(x)dx.

In other words,

(2) f (0) =

∫ 1

0
f (x)dx + B1 f (x)

∣∣∣∣∣∣1
0

+

∫ 1

0
B1(x) f ′(x)dx.

Now we prove

(3) f (0) =

∫ 1

0
f (x) +

m∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣∣∣∣
1

0

+ (−1)m+1
∫ 1

0

Bm(x)
m!

f (m)(x)dx.

Observe that (2) is the base case of (3). Assume that we have proved equation (3) for all k ≤ m. By the fact

that B′k(x) = kBk−1(x),∫ 1

0
Bk(x) f (k)(x)dx =

Bk+1(x)
k + 1

f (k)(x)
∣∣∣∣∣1
0
−

1
k + 1

∫ 1

0
Bk+1(x) f (k+1)(x)dx

By the fact that (3) holds for m and the prior calculation,

f (0) =

∫ 1

0
f (x) +

m∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣∣∣∣
1

0

+
(−1)m+1

m!

(
Bm+1(x)
m + 1

f (m)(x)
∣∣∣∣∣1
0
−

1
m + 1

∫ 1

0
Bm+1(x) f (m+1)(x)dx

)
.

If m is odd, (−1)m+1 = 1. If m is even Bm+1(0) = Bm+1(1) = 0. Thus

(−1)m+1

m!
Bm+1(x)
m + 1

f (m)(x)
∣∣∣∣∣1
0

=
Bm+1

(m + 1)!
f (m)(x)

∣∣∣∣∣1
0
, and

f (0) =

∫ 1

0
f (x) +

m+1∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣∣∣∣
1

0

+
(−1)m+2

(m + 1)!

∫ 1

0
Bm+1(x) f (m+1)(x)dx.

Applying this result to f ( j + x) for all a ≤ j < b and summing gives the desired formula. �
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4. Applications of the summation formula

Now we return to our original example, the sum of integers raised to a power.

Corollary 4.1.

S m(n) =
1

m + 1

m∑
k=0

(
m + 1

k

)
Bk nm+1−k.

Proof. Fix p ≥ 1. We will apply the Euler summation formula to the function f (x) = xp, with a = 0, b = n

and m = p. For l ≤ p

f (l)(x) = m(m − 1) . . . (m − l + 1)xm−l.

Thus f (p) = p! and

Rm = (−1)m+1
∫ b

a
B∗m(x)dx = (−1)m+1(b − a)

∫ 1

0
Bm(x)dx = 0

Thus
n−1∑
i=0

xm =

∫ n

0
xmdx +

m∑
k=1

Bk

k!
m(m − 1) . . . (m − k + 2)xm−l+1

∣∣∣∣∣∣∣
n

0

+ Rm

=
xm+1

m + 1
+

1
m + 1

m∑
k=1

(
m + 1

k

)
Bknm−l+1

=
1

m + 1

m∑
k=0

(
m + 1

k

)
Bknm−l+1

�

Next we apply the summation formula in the case of the harmonic series. Let f (x) = 1
x , a = 1, b = n, and

m ≥ 1. Then

f (l)(x) = (−1)l l!
xl+1.

Thus
n−1∑
i=1

1
i

= ln(n) +

m∑
k=1

Bk

k!
(−1)k−1 (k − 1)!

xk

∣∣∣∣∣∣∣
n

1

+ (−1)m−1
∫ n

1

B∗m(x)
m!

(−1)m m!
xm+1 dx

= ln(n) + B1

(
1
n
− 1

)
−

m∑
k=2

Bk

k

(
1
nk − 1

)
−

∫ n

1

B∗m(x)
xm+1 dx

Let

γ = −B1 +

m∑
k=2

Bk

k
−

∫ ∞

1

B∗m(x)
xm+1 .

Thus
n∑

i=1

1
i

= ln(n) + γ +
1

2n
−

m∑
k=2

Bk

knk −

∫ ∞

n

B∗m(x)
xm+1 dx.
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Finally a similar calculation can be made in the case f (x) = ln(x) to gain results on Stirling’s formula. Let

a = 1 and b = 2 and let m be any integer larger than 1. Following the same logic as above, we arrive at the

formula:

ln(n!) =

(
n +

1
2

)
ln(n) − n + C +

m∑
k=2

Bk

k(k − 1)nk−1 −

∫ ∞

n

B∗m(x)
mxm dx

5. Fourier analysis of Bernoulli polynomials

Let us now calculate the Fourier coefficients of the periodic functions B∗k(y). We will denote the lth

Fourier coefficient of f (x) by f̂ (l).

B̂∗1(0) =

∫ 1

0
B1(x)dx = 0.

For l , 0,

B̂∗1(l) =

∫ 1

0
(x −

1
2

)e−2πixldx

=
−1
2πil

Then using the fact that for all smooth functions f we have that f̂ ′(l) = 2πil f̂ (l) and the fact that B′k(x) =

kBk−1(x). We get that

2π i lB̂∗k(l) = k B̂∗k(l)

We will take for granted that the Fourier series acts nicely for k ≥ 2(for k ≥ 2 our functions are C1). So for

k ≥ 2

B∗k(x) =
∑
l,0

−k!
(2π i l)k e2π i l

In particular for k ≥ 2 and x = 0

Bk =
∑
l,0

−k!
(2π i l)k

For even k

Bk =
−2k!

(2π i)k

∞∑
l=1

lk

=
−2k!

(2π i)k ζ(k)

Thus we can calculate the values of ζ(k) for even values of k very quickly. For example

ζ(2) =
π2

6
ζ(4) =

π4

90
ζ(6) =

π6

945
ζ(8) =

π8

9450.
Furthermore since limn→∞ ζ(2n) = 1, we find the asymptotic relation mentioned in section 2:

Bk ∼
−2k!
(2πi)k (as k → ∞).
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