
DESARGUES’ THEOREM

DONALD ROBERTSON

Two triangles ABC and A′B′C ′ are said to be in perspective axially when no two
vertices are equal and when the three intersection points AC∩A′C ′, AB∩A′B′ and
BC∩B′C ′ are collinear. We say ABC and A′B′C ′ are in perspective centrally when
no two vertices are equal and when the intersection points A′A ∩B′B, A′A ∩ C ′C
and B′B ∩C ′C are all equal. Girard Desargues, the father of projective geometry,
proved the following theorem in the 17th century. It was first published in 1648 by
Abraham Bosse.

Theorem 1. Two triangles in the real projective plane are in perspective centrally
if and only if they are in perspective axially.

These properties of perspective only make sense when we know that any two lines
intersect at exactly one point. Thus the natural setting for studying these properties
is projective space, rather than the more familiar affine space. We restrict ourselves
to projective planes because in higher dimensions Desargues’ theorem follows from
the fact that any two planes intersect in a line.

1. Affine and Projective Planes

An affine plane consists of a set P of points and a set L of subsets of P satisfying
the following three axioms.
AP1 Any two distinct points lie on one and only one line.
AP2 Given a line l and a point P not contained in l there is one and only one

line which contains P and is disjoint from l.
AP3 There are three points not all contained in a single line.
Members of L are called lines. Two lines are called parallel if they are equal or

disjoint. A set of points is called collinear if there is a line containing the set. In
these terms AP2 states that through any point off a given line there passes exactly
one parallel line, and AP3 postulates the existence of three non-collinear points.

Example 1. Our first example is the Euclidean plane R2. In this setting the axioms
are familiar facts about points and lines.

Example 2. One can check that the familiar points and lines of R3 do not form an
affine space. To talk about the affine geometry of R3 one would need to modify
and extend the axioms to take planes into account.

Example 3. What is the smallest affine plane? By AP3 we have three distinct
points P , Q and R. Since any two points lie on exactly one line we get three
lines PQ, PR and QR. Since the three points are not collinear the three lines are
distinct. We do not yet have an affine plane because AP2 fails. Taking the line QR
and the point P we are forced to introduce a line l containing P and disjoint from
QR. The line PQ and the point R fail AP2 so we need a line m through R and
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disjoint from PQ. But now R and l fail AP2 unless one of QR and m intersects
l. Since l was assumed disjoint from QR we require l and m to intersect at a point
S. Check that S cannot belong to {P,Q,R}. Adding the line SQ as we must we
arrive at an affine plane.

A projective plane consists of a set P of points, a set L of lines, and an incidence
relation telling us which points lie on which lines, satisfying the following axioms.

PP1 There is a unique line containing any two distinct points.
PP2 There is a unique point lying on any two distinct lines.
PP3 There exist three points not all on the same line.
PP4 There exist three points on any given line.

Again a set of points is called collinear if there is a line containing the set. We
call a set of lines concurrent if there is a point common to all lines in the set. We
call the unique line defined by two points the join of the points and the unique
point lying on two lines the intersection of the two lines. Since no two lines are
disjoint, we no longer have a notion of parallelism. We call any collection of three
non-collinear points a triangle.

Example 4. The Fano plane is a projective plane.

Example 5. Here we extend the affine plane R2 to a projective plane ER2. Let P
be the set of points in R2 and let L be the set of lines in R2. For any line ` in R2

define the pencil P` to be the set of all lines parallel to `. For each pencil append
to P a point P`, called a point at infinity. Add to each line its corresponding point
at infinity. Finally, append to L the set of all points at infinity. This line is called
the line at infinity.

2. The Desargues configuration

When Desargues’ theorem holds in a projective plane we get ten points and
ten lines with each line containing exactly three of the ten points and any three
lines intersecting at exactly one of the ten points. This is the so called Desargues
configuration. It is self-dual in the sense that the following exchanges

points↔ lines
collinear↔ concurrent

join↔ intersection

result in the same diagram. Via this duality we get the correspondence

triangles in perspective axially↔ triangles in perspective centrally

so duality lets us get away with only proving or disproving one of the implications
in Desargues’ theorem.

3. A non-Desarguesian projective plane

Here we give an example of a projective plane in which Desargues’ theorem does
not hold. Our example is the projective geometry of one-way-refracted light-rays
at an interface. Take points to be the points of the extended Euclidean plane. For
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lines we take the set of lines in ER2, remove the extended Euclidean lines with
positive slope and adjoin the refracted Euclidean lines

y =

{
1
2 (x− a) tan θ x > a

(x− a) tan θ x ≤ a
as a varies over R and 0 < θ < π

2 , each with the point at infinity corresponding to
the upper ray adjoined. We can think of the lines as light rays and the x-axis as
a material boundary (say between air and water) where only light rays of positive
slope are refracted.

One can check that we do get a projective plane. We now look at two underwater
triangles with parallel sides which are in perspective centrally in ER2 at a point O
above the water. Since the pairs of sides are parallel the triangles are in perspective
axially, the three intersection points lying on the line at infinity. However the two
triangles are not in perspective centrally because we replaced one of the lines we
needed with a refracted line.

4. Projective planes over division rings

A division ring is an algebraic object satisfying all the field axioms except com-
mutativity of multiplication. The quaternions are an example of a division ring
which is not a field. In this section we show how to get a projective plane P(2,D)
from a division ring D and prove that Desargues’ theorem is true in such a projective
plane.

Let D be a division ring and define P(2,D) to consist of

P = {(x, y, z) ∈ D3 : {x, y, z} 6= {0}} / (x, y, z) ∼ (xρ, yρ, zρ)

L = {(a, b, c) ∈ D3 : {a, b, c} 6= {0}} / (a, b, c) ∼ (ρa, ρb, ρc)

where ρ ranges over the non-zero elements of D. We say that a point (x, y, z) lies
on a line (a, b, c) if and only if

ax+ by + cz = 0.

This is easily seen to be well-defined. We are careful to place ρ on the left for
lines and on the right for points because multiplication need not be commutative.
Given a point A of P we call any representative a = (x, y, z) of A homogeneous
coordinates for A. For brevity we use the corresponding lower-case letter to denote
homogeneous coordinates of a point.

When D is a field we can identify P with the one-dimensional subspaces of D3

and L with the two-dimensional subspaces of D3.

Example 6. P(2,F2) is the Fano plane.

Example 7. P(2,R) is the same as ER2.

Lemma 1. Let A and A′ be distinct points in P(2,D). Let a = (x, y, z) and a′ =
(r, s, t) be homogeneous coordinates for A and A′ respectively. Then the unique line
containing A and A′ contains exactly the points having homogeneous coordinates

aλ+ a′λ′ = (xλ+ rλ′, yλ+ sλ′, zλ+ tλ′)

for any λ and λ′ from D not both zero.

Theorem 2. Let D be a division ring distinct from F2. Then Desargues’ theorem
holds in P(2,D).
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Proof. Let ABC and A′B′C ′ be triangles in P(2,D) which are in perspective cen-
trally. Let the points have homogeneous coordinates denoted by a, b, c, a′, b′, c′

respectively. By hypothesis there is a unique point O lying on the three lines A′A,
B′B and C ′C. Let o be homogeneous coordinates for O. Applying the lemma to A
and A′, then B and B′ and finally C and C ′, we can find elements of D such that

o = aλ+ a′λ′

o = bµ+ b′µ′

o = cν + c′ν′

Thus we have points

n = aλ− bµ = b′µ′ − a′λ′

m = cν − aλ = a′λ′ − c′ν′

l = bµ− cν = c′ν′ − b′µ′

which lie on AB ∩A′B′, AC ∩A′C ′ and BC ∩B′C ′ respectively. But

l +m+ n = 0

so the three points are collinear. �

We excluded F2 because P(2,F2), the Fano plane, does not contain enough points
for a Desargues configuration.

5. Introducing coordinates

Let π be a projective plane with points P and lines L. Fix a triangle OXY in
π. Think of O as the origin, OX as the x-axis, and OY as the y-axis. Think of the
line XY as the line at infinity. Let I be a point on XY distinct from X and from
Y . Let U be a point on OI distint from O and from I. Let ∆ be a set which is in
bijective correspondence with the points on OI which are distinct from I. Think
of ∆ as the diagonal. We relabel the elements of ∆ so that

O ↔ 0 U ↔ 1

and denote by c the element of ∆ corresponding to any point C of OI not belonging
to {O,U, I}. Define the coordinates of such a point C to be (c, c). The coordinates
of O are (0, 0) and the coordinates of I are (1, 1).

We now coordinatize the rest of the points off the line at infinity. Let P be a point
which does not lie on XY . Put A = Y P ∩OI and B = XP ∩OI. The coordinates
of A are (a, a) and the coordinates of B are (b, b). We define the coordinates of P
to be (a, b), calling a the x-coordinate and b the y-coordinate. If P happens to lie
on OI then A = B = P so the coordinates are consistent with our earlier labeling
of points on OI. Note that the x-coordinate is zero if and only if P lies on OY and
the y-coordinate is zero if and only if P lies on OX.

Finally we coordinatize the points of XY . Give Y the coordinate (∞). For any
point M on XY distinct from Y , let T = Y U ∩OM . Let T have coordinates (1,m).
We define the coordinate of M to be (m).

The idea now is to use properties of projective planes to put structures of addition
and multiplication on ∆.

Example 8. To add elements x and y of ∆ consider the points A = (x, 0) and
B = (0, y) and define x+ y to be the y-coordinate of the point Y A ∩ IB.
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Example 9. To multiply elements x and y of ∆ let M be the point (y) and let A
be the point (x, 0). Define x · y to be the y-coordinate of Z = OM ∩AX.

A loop is a set with a binary operation which has an identity and in which the
equations ax = b and ya = b can be solved uniquely for x and y.

Theorem 3. For any projective space π the systems (∆,+) and (∆\{0}, ·) are
loops.

Additional algebraic properties of the two loops (∆,+) and (∆\{0}, ·) correspond
to additional geometric properties of the plane.

Theorem 4. Let π be a projective plane. Desargues’ theorem is true in π if and
only if ∆ is a division ring.

6. Things not covered

• The transformations of projective planes.
• Projective spaces.
• Pappus’ theorem.
• Conics in projective planes.
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