2015 Gordon examination problems

1. Prove that there are infinitely many integers not representable as $n^{3}+m^{3}+k^{3}$, where n, m, k are positive integers.
2. Can the plane be covered by the interiors of a finite collection of parabolas? (The parabolas may have any orientation, see picture.)

3. Let A be a 2×2 matrix with integer entries and determinant 1 . Prove that A is a product of several matrices of the form $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$.
4. Let $p \in \mathbb{Z}[x]$ (a polynomial with integer coefficients) and let $a, b, c \in \mathbb{Z}$ be such that $p(a)=b, p(b)=c$, and $p(c)=a$. Prove that $a=b=c$.
5. The square $A B C D$ is inscribed in a circle of radius R, and P is a point on the circle. Prove that $|P A|^{4}+|P B|^{4}+|P C|^{4}+|P D|^{4}=$ $24 R^{4}$.

6. Prove that for any $x, y, z \geq 0, \sqrt[2]{x+\sqrt[3]{y+\sqrt[4]{z}}} \geq \sqrt[32]{x y z}$.
