2016 Gordon examination problems

- 1. Is there a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ which takes on rational values at the irrational points and irrational values at the rational points?
- 2. Each point of the three dimensional space \mathbb{R}^3 is colored either red or blue. Prove that there exists an equilateral triangle with side length 1 whose vertices have the same color.
- **3.** Prove that for any $n, d \in \mathbb{N}$ and any vectors $v_1, \ldots, v_n \in \mathbb{R}^d$ one has $\sum_{i,j=1}^n e^{v_i \cdot v_j} \ge n^2$. (Here $u \cdot v$ represents the dot product of vectors u and v.)
- 4. Evaluate $\int_{x^2+y^2 \le R^2} \sin x^2 \cos y^2 \, dx \, dy$.
- 5. Prove that for $z_1, \ldots, z_4 \in \mathbb{C}$, $\max_{|z_1|, \ldots, |z_4| \le 1} |z_1 z_3 + z_1 z_4 + z_2 z_3 z_2 z_4| = 2\sqrt{2}$.
- 6. Let A be a 2016×2016 matrix such that all diagonal entries of A are zero and the rest of entries are equal to ± 1 :

$$A = \begin{pmatrix} 0 \ \pm 1 \ \pm 1 \ \dots \ \pm 1 \\ \pm 1 \ 0 \ \pm 1 \ \dots \ \pm 1 \\ \pm 1 \ \pm 1 \ 0 \ \dots \ \pm 1 \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ \pm 1 \ \pm 1 \ \pm 1 \ \dots \ 0 \end{pmatrix}$$

Prove that $\det A \neq 0$.