2016 Gordon examination problems

1. Is there a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ which takes on rational values at the irrational points and irrational values at the rational points?
2. Each point of the three dimensional space \mathbb{R}^{3} is colored either red or blue. Prove that there exists an equilateral triangle with side length 1 whose vertices have the same color.
3. Prove that for any $n, d \in \mathbb{N}$ and any vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$ one has $\sum_{i, j=1}^{n} e^{v_{i} \cdot v_{j}} \geq n^{2}$. (Here $u \cdot v$ represents the dot product of vectors u and v.)
4. Evaluate $\int_{x^{2}+y^{2} \leq R^{2}} \sin x^{2} \cos y^{2} d x d y$.
5. Prove that for $z_{1}, \ldots, z_{4} \in \mathbb{C}, \max _{\left|z_{1}\right|, \ldots,\left|z_{4}\right| \leq 1}\left|z_{1} z_{3}+z_{1} z_{4}+z_{2} z_{3}-z_{2} z_{4}\right|=2 \sqrt{2}$.
6. Let A be a 2016×2016 matrix such that all diagonal entries of A are zero and the rest of entries are equal to ± 1 :

$$
A=\left(\begin{array}{ccccc}
0 & \pm 1 & \pm 1 & \cdots & \pm 1 \\
\pm 1 & 0 & \pm 1 & \ldots & \pm 1 \\
\pm 1 & 0 & 0 & \cdots & \pm 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\pm 1 \pm 1 & \pm 1 & \cdots & 0
\end{array}\right)
$$

Prove that $\operatorname{det} A \neq 0$.

