
2015 Gordon exam solutions

1. Prove that there are infinitely many integers not representable as a sum of cubes of three positive integers.

Solution. For any n ∈ Z, n3 ≡ 0 or 1 or −1mod 9. (Indeed, if n = 3k + d where d = 0, 1, or −1, then
n3 = 27k3 + 27k2d+ 9kd2 + d3.) So, for any n,m, k ∈ N, n3 +m3 + k3 ∈ {0, 1, 2, 3,−1,−2,−3}mod 9, and
so, all integers that are congruent to 4, 5, or 6 modulo 9 are not representable as the sum of three cubes of
integers.

Another solution. For any N ∈ N, let AN be the number of elements of {1, . . . , N} representable as a sum
of three cubes of positive integers, and let CN be the number of cubes in {1, . . . , N}. Then CN ≤ N1/3, and
AN ≤

(

CN

3

)

+2
(

CN

2

)

+CN (where the summands correspond to the number of integers representable as sums
of three distinct cubes, of two equal and one distinct cubes, and of three equal cubes respectively). So,

AN ≤ 1

6
C3

N + b2C
2
N + b1CN + b0 = 1

6
N + b2N

2/3 + b1N
1/3 + b0

for some bi ∈ R. For large enough N , AN < 1

5
N . So, for large N , at least 4/5 of integers from {1, . . . , N}

are not representable as sums of the three cubes of positive integers.

2. Can the plane be covered by the interiors of a finite collection of parabolas?

Solution. No. Any parabola P has the property that for any straight line
L not parallel to the axis of P , the intersection of L with the interior of the
parabola is a bounded interval in L. (Indeed, after changing coordinates, we
may assume that the parabola is given by y = x2 and the line is y = ax + b.
Then a point (x, y) of the line is in the interior of the parabola iff ax+ b > x2,
which defines a bounded (or empty) interval of xs between the roots of the
polynomial x2 − ax− b.) Given several parabolas, choose a line L which is not
parallel to the axis of all these parabolas; then the intersection of L with the
union of the interiors of the parabolas is a finite union of bounded intervals,
and so, there are points of L that don’t belong to this union.
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Another solution. The answer is still no. First notice that for any positive
number α < π, any parabola P can be covered by an angle of size α. Indeed,
after an appropriate motion (a rotation and a shift) of the plane, we may
assume that, in Cartesian coordinates, P is defined by the equation y = ax2

for some a > 0. Take x0 = cot(α/2)/(2a); then the angle between the tangent
lines to P at the points (−x0, ax

2
0) and (x0, ax

2
0) is 2

(

π
2
− arctan(2ax0)

)

=
2arccot(2ax0) = α.
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Next, notice that if S is a circle and A is an angle of size α with vertex
inside S, then the arc length of the arc cut off by A on S does not exceed
2α: indeed, A is contained in an angle of size α with vertex on S, and, by a
geometry theorem, such an angle cuts off on S an arc of arc length 2α.

Now, given k parabolas on the plane, cover each of them by an angle of
size < π/k, and let S be a circle big enough so that the vertices of all these k
angles are inside S; then the angles, and so the interiors of the parabolas, cut
off on S a collection of arcs of total arc length < 2k(π/k) = 2π, and so, don’t
cover S.
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3. Let A be a 2 × 2 matrix with integer entries and determinant 1. Prove that A is a product of several

matrices of the form (1 1
0 1
), (1 0

1 1
),

(

1 −1

0 1

)

, and
(

1 0
−1 1

)

.

Solution. Call the matrices listed in the formulation “elementary”. Multiplication of a matrix
(

a b
c d

)

by the
elementary matrices from the left is equivalent to adding/subtracting one of the rows to/from the other one.
(For example, (1 1

0 1
)
(

a b
c d

)

=
(

a+c b+d
b d

)

.) Similarly, multiplication by the elementary matrices from the right is
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equivalent to adding/subtracting one of the columns to/from the other one. We therefore may reformulate
the problem this way: show that any integer matrix

(

a b
c d

)

can be reduced to the identity matrix using the
operations of adding/subtracting one of the rows/columns to/from the other one.

Ignoring the second row and focusing on the first one, we see that the column operations act this way:
(a, b) 7→ (a ± b, b) or (a, b) 7→ (a, b ± a). Thus, following the Euclidean algorithm, we may reduce the first
row to the form (u, 0) or (0, u) where u = ± gcd(a, b). Moreover, the transformations (0, u) 7→ (u, u) 7→ (u, 0)
and (0,−u) 7→ (u,−u) 7→ (u, 0) show that we can get (u, 0) with positive u. Hence, the column operations
allow us to reduce the matrix to the form (u 0

v w), with u > 0. The row/column operations we use don’t change
the determinant of the matrix, which remains equal to 1; so, it must be that u = w = 1. Now, using a row
operation v times, we may reduce the matrix to (1 0

0 1
).

4. Let p ∈ Z[x] and let a, b, c ∈ Z be such that p(a) = b, p(b) = c, and p(c) = a. Prove that a = b = c.

Solution. If, say, a = b, then also c = p(b) = p(a) = b. So, assume that a, b, c are all distinct. Since p
has integer coefficients, for any distinct integer u, v the difference u − v divides the difference p(u) − p(v).
(Indeed, if p(x) = αnx

n + · · · + α1x + α0 with αi ∈ Z, then p(u) − p(v) = αn(u
n − vn) + · · · + α1(u − v),

where each summand is divisible by u− v.) Hence,

(a− b)
∣

∣ (p(a)− p(b)) = b− c, (b− c)
∣

∣ (c− a), and (c− a)
∣

∣ (a− b).

It follows that |a − b| = |b − c| = |c − a|. But then the equality (a − b) + (b − c) + (c − a) = 0 implies that
a− b = b− c = c− a = 0.

5. The square ABCD is inscribed in a circle of radius R, and P is a point on the circle. Prove that

|PA|4 + |PB|4 + |PC|4 + |PD|4 = 24R4.

Solution. We may assume that we deal with the unit circle C = {z : |z| = 1}
in the complex plane and that A,B,C,D are the points 1, i,−1,−i on it. For
any z, w ∈ C,

|z−w|4 = (z−w)2(z − w)
2

= (z−w)2(z̄−w̄)2 = (z−w)2(z−1−w−1)2 = (z−w)4/z2w2.
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Take any point P = z ∈ C. Then

|PA|4 + |PB|4 + |PC|4 + |PD|4 = |z − 1|4 + |z − i|4 + |z + 1|4 + |z + i|4
= (z − 1)4/z2 − (z − i)4/z2 + (z + 1)4/z2 − (z + i)4/z2

= 1

z2

(

(z4−4z3+6z2−4z+1)−(z4−4iz3−6z2+4iz+1)+(z4+4z3+6z2+4z+1)−(z4+4iz3−6z2−4iz+1)
)

= 1

z2 24z
2 = 24.

Another solution. From the right triangles △APC and △BPD we see that
|PA|2 + |PC|2 = |PB|2 + |PD|2 = 4R2. It follows that

|PA|4 + |PC|4 + |PB|4 + |PD|4 = 32R4 − 2|PA|2|PC|2 − 2|PB|2|PD|2.

Now, |PA| · |PC| = 2Area(△APC) = 2R|PH|, where PH is the height of
△APC, and similarly, |PB| · |PD| = 2R|PK| where PK is the height of
△BPD. So, |PA|2|PC|2 + |PB|2|PD|2 = 4R2(|PH|2 + |PK|2). The lines
AC and BD are orthogonal, so PH and PK are orthogonal, so OHPK is a
rectangle, and |PH|2+|PK|2 = |HK|2 = |OP |2 = R2. Hence, |PA|4+|PC|4+
|PB|4 + |PD|4 = 32R4 − 2 · 4R4 = 24R4.
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6. Prove that for any x, y, z ≥ 0, 2

√

x+ 3

√

y + 4
√
z ≥ 32

√
xyz.

Solution. Assume that, for some x, y, z ≥ 0, 2

√

x+ 3

√

y + 4
√
z < 32

√
xyz. Then

2
√
x < 32

√
xyz, 6

√
y < 32

√
xyz, and 24

√
z < 32

√
xyz,

so
x < (xyz)1/16, y < (xyz)3/16, and z < (xyz)12/16,

and so, xyz < (xyz)1/16+3/16+12/16 = xyz, contradiction.

Another solution. We will make use of the inequality a+ b ≥ aλb1−λ, which holds for any a, b ≥ 0 and any
λ ∈ [0, 1]. (Here is the proof: We may assume that a, b > 0. Clearly, a+b ≥ λa+(1−λ)b. By the concavity of
log, log(λa+(1−λ)b) ≥ λ log a+(1−λ) log b = log(aλb1−λ), which implies that λa+(1−λ)b ≥ aλb1−λ since
log is a strictly increasing function.) Applying the inequality with λ = 1/5, we obtain y+ 4

√
z ≥ y1/5z1/5, and

so 3

√

y + 4
√
z ≥ (yz)1/15. Taking λ = 1/16, we obtain x + (yz)1/15 ≥ x1/16(yz)1/16, so, 2

√

x+ 3

√

y + 4
√
z ≥

(xyz)1/32.
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