2015 Gordon exam solutions

1. Prove that there are infinitely many integers not representable as a sum of cubes of three positive integers. Solution. For any $n \in \mathbb{Z}, n^{3} \equiv 0$ or 1 or $-1 \bmod 9$. (Indeed, if $n=3 k+d$ where $d=0,1$, or -1 , then $n^{3}=27 k^{3}+27 k^{2} d+9 k d^{2}+d^{3}$.) So, for any $n, m, k \in \mathbb{N}, n^{3}+m^{3}+k^{3} \in\{0,1,2,3,-1,-2,-3\} \bmod 9$, and so, all integers that are congruent to 4,5 , or 6 modulo 9 are not representable as the sum of three cubes of integers.

Another solution. For any $N \in \mathbb{N}$, let A_{N} be the number of elements of $\{1, \ldots, N\}$ representable as a sum of three cubes of positive integers, and let C_{N} be the number of cubes in $\{1, \ldots, N\}$. Then $C_{N} \leq N^{1 / 3}$, and $A_{N} \leq\binom{ C_{N}}{3}+2\binom{C_{N}}{2}+C_{N}$ (where the summands correspond to the number of integers representable as sums of three distinct cubes, of two equal and one distinct cubes, and of three equal cubes respectively). So,

$$
A_{N} \leq \frac{1}{6} C_{N}^{3}+b_{2} C_{N}^{2}+b_{1} C_{N}+b_{0}=\frac{1}{6} N+b_{2} N^{2 / 3}+b_{1} N^{1 / 3}+b_{0}
$$

for some $b_{i} \in \mathbb{R}$. For large enough $N, A_{N}<\frac{1}{5} N$. So, for large N, at least $4 / 5$ of integers from $\{1, \ldots, N\}$ are not representable as sums of the three cubes of positive integers.

2. Can the plane be covered by the interiors of a finite collection of parabolas?

Solution. No. Any parabola P has the property that for any straight line L not parallel to the axis of P, the intersection of L with the interior of the parabola is a bounded interval in L. (Indeed, after changing coordinates, we may assume that the parabola is given by $y=x^{2}$ and the line is $y=a x+b$. Then a point (x, y) of the line is in the interior of the parabola iff $a x+b>x^{2}$, which defines a bounded (or empty) interval of x s between the roots of the polynomial $x^{2}-a x-b$.) Given several parabolas, choose a line L which is not parallel to the axis of all these parabolas; then the intersection of L with the
 union of the interiors of the parabolas is a finite union of bounded intervals, and so, there are points of L that don't belong to this union.

Another solution. The answer is still no. First notice that for any positive number $\alpha<\pi$, any parabola P can be covered by an angle of size α. Indeed, after an appropriate motion (a rotation and a shift) of the plane, we may assume that, in Cartesian coordinates, P is defined by the equation $y=a x^{2}$ for some $a>0$. Take $x_{0}=\cot (\alpha / 2) /(2 a)$; then the angle between the tangent
 lines to P at the points $\left(-x_{0}, a x_{0}^{2}\right)$ and $\left(x_{0}, a x_{0}^{2}\right)$ is $2\left(\frac{\pi}{2}-\arctan \left(2 a x_{0}\right)\right)=$ $2 \operatorname{arccot}\left(2 a x_{0}\right)=\alpha$.

Next, notice that if S is a circle and A is an angle of size α with vertex inside S, then the arc length of the arc cut off by A on S does not exceed 2α : indeed, A is contained in an angle of size α with vertex on S, and, by a geometry theorem, such an angle cuts off on S an arc of arc length 2α.

Now, given k parabolas on the plane, cover each of them by an angle of size $<\pi / k$, and let S be a circle big enough so that the vertices of all these k angles are inside S; then the angles, and so the interiors of the parabolas, cut
 off on S a collection of arcs of total arc length $<2 k(\pi / k)=2 \pi$, and so, don't cover S.
3. Let A be a 2×2 matrix with integer entries and determinant 1. Prove that A is a product of several matrices of the form $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & -1 \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)$.
Solution. Call the matrices listed in the formulation "elementary". Multiplication of a matrix $\left(\begin{array}{l}a b \\ c \\ d\end{array}\right)$ by the elementary matrices from the left is equivalent to adding/subtracting one of the rows to/from the other one. (For example, $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+c & b+d \\ b & d\end{array}\right)$.) Similarly, multiplication by the elementary matrices from the right is
equivalent to adding/subtracting one of the columns to/from the other one. We therefore may reformulate the problem this way: show that any integer matrix $\left(\begin{array}{l}a \\ a \\ c\end{array}\right)$ can be reduced to the identity matrix using the operations of adding/subtracting one of the rows/columns to/from the other one.

Ignoring the second row and focusing on the first one, we see that the column operations act this way: $(a, b) \mapsto(a \pm b, b)$ or $(a, b) \mapsto(a, b \pm a)$. Thus, following the Euclidean algorithm, we may reduce the first row to the form $(u, 0)$ or $(0, u)$ where $u= \pm \operatorname{gcd}(a, b)$. Moreover, the transformations $(0, u) \mapsto(u, u) \mapsto(u, 0)$ and $(0,-u) \mapsto(u,-u) \mapsto(u, 0)$ show that we can get $(u, 0)$ with positive u. Hence, the column operations allow us to reduce the matrix to the form $\left(\begin{array}{ll}u & 0 \\ v & w\end{array}\right)$, with $u>0$. The row/column operations we use don't change the determinant of the matrix, which remains equal to 1 ; so, it must be that $u=w=1$. Now, using a row operation v times, we may reduce the matrix to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
4. Let $p \in \mathbb{Z}[x]$ and let $a, b, c \in \mathbb{Z}$ be such that $p(a)=b, p(b)=c$, and $p(c)=a$. Prove that $a=b=c$.

Solution. If, say, $a=b$, then also $c=p(b)=p(a)=b$. So, assume that a, b, c are all distinct. Since p has integer coefficients, for any distinct integer u, v the difference $u-v$ divides the difference $p(u)-p(v)$. (Indeed, if $p(x)=\alpha_{n} x^{n}+\cdots+\alpha_{1} x+\alpha_{0}$ with $\alpha_{i} \in \mathbb{Z}$, then $p(u)-p(v)=\alpha_{n}\left(u^{n}-v^{n}\right)+\cdots+\alpha_{1}(u-v)$, where each summand is divisible by $u-v$.) Hence,

$$
(a-b)|(p(a)-p(b))=b-c, \quad(b-c)|(c-a), \quad \text { and }(c-a) \mid(a-b)
$$

It follows that $|a-b|=|b-c|=|c-a|$. But then the equality $(a-b)+(b-c)+(c-a)=0$ implies that $a-b=b-c=c-a=0$.
5. The square $A B C D$ is inscribed in a circle of radius R, and P is a point on the circle. Prove that $|P A|^{4}+|P B|^{4}+|P C|^{4}+|P D|^{4}=24 R^{4}$.

Solution. We may assume that we deal with the unit circle $C=\{z:|z|=1\}$ in the complex plane and that A, B, C, D are the points $1, i,-1,-i$ on it. For any $z, w \in C$,
$|z-w|^{4}=(z-w)^{2} \overline{(z-w)}^{2}=(z-w)^{2}(\bar{z}-\bar{w})^{2}=(z-w)^{2}\left(z^{-1}-w^{-1}\right)^{2}=(z-w)^{4} / z^{2} w^{2}$.

Take any point $P=z \in C$. Then

$$
\begin{aligned}
& |P A|^{4}+|P B|^{4}+|P C|^{4}+|P D|^{4}=|z-1|^{4}+|z-i|^{4}+|z+1|^{4}+|z+i|^{4} \\
& =(z-1)^{4} / z^{2}-(z-i)^{4} / z^{2}+(z+1)^{4} / z^{2}-(z+i)^{4} / z^{2} \\
& =\frac{1}{z^{2}}\left(\left(z^{4}-4 z^{3}+6 z^{2}-4 z+1\right)-\left(z^{4}-4 i z^{3}-6 z^{2}+4 i z+1\right)+\left(z^{4}+4 z^{3}+6 z^{2}+4 z+1\right)-\left(z^{4}+4 i z^{3}-6 z^{2}-4 i z+1\right)\right) \\
& =\frac{1}{z^{2}} 24 z^{2}=24
\end{aligned}
$$

Another solution. From the right triangles $\triangle A P C$ and $\triangle B P D$ we see that $|P A|^{2}+|P C|^{2}=|P B|^{2}+|P D|^{2}=4 R^{2}$. It follows that

$$
|P A|^{4}+|P C|^{4}+|P B|^{4}+|P D|^{4}=32 R^{4}-2|P A|^{2}|P C|^{2}-2|P B|^{2}|P D|^{2}
$$

Now, $|P A| \cdot|P C|=2 \operatorname{Area}(\triangle A P C)=2 R|P H|$, where $P H$ is the height of $\triangle A P C$, and similarly, $|P B| \cdot|P D|=2 R|P K|$ where $P K$ is the height of $\triangle B P D$. So, $|P A|^{2}|P C|^{2}+|P B|^{2}|P D|^{2}=4 R^{2}\left(|P H|^{2}+|P K|^{2}\right)$. The lines $A C$ and $B D$ are orthogonal, so $P H$ and $P K$ are orthogonal, so $O H P K$ is a rectangle, and $|P H|^{2}+|P K|^{2}=|H K|^{2}=|O P|^{2}=R^{2}$. Hence, $|P A|^{4}+|P C|^{4}+$
 $|P B|^{4}+|P D|^{4}=32 R^{4}-2 \cdot 4 R^{4}=24 R^{4}$.
6. Prove that for any $x, y, z \geq 0, \sqrt[2]{x+\sqrt[3]{y+\sqrt[4]{z}}} \geq \sqrt[32]{x y z}$.

Solution. Assume that, for some $x, y, z \geq 0, \sqrt[2]{x+\sqrt[3]{y+\sqrt[4]{z}}}<\sqrt[32]{x y z}$. Then

$$
\sqrt[2]{x}<\sqrt[32]{x y z}, \quad \sqrt[6]{y}<\sqrt[32]{x y z}, \quad \text { and } \quad \sqrt[24]{z}<\sqrt[32]{x y z}
$$

so

$$
x<(x y z)^{1 / 16}, \quad y<(x y z)^{3 / 16}, \quad \text { and } z<(x y z)^{12 / 16}
$$

and so, $x y z<(x y z)^{1 / 16+3 / 16+12 / 16}=x y z$, contradiction.
Another solution. We will make use of the inequality $a+b \geq a^{\lambda} b^{1-\lambda}$, which holds for any $a, b \geq 0$ and any $\lambda \in[0,1]$. (Here is the proof: We may assume that $a, b>0$. Clearly, $a+b \geq \lambda a+(1-\lambda) b$. By the concavity of $\log , \log (\lambda a+(1-\lambda) b) \geq \lambda \log a+(1-\lambda) \log b=\log \left(a^{\lambda} b^{1-\lambda}\right)$, which implies that $\lambda a+(1-\lambda) b \geq a^{\lambda} b^{1-\lambda}$ since \log is a strictly increasing function.) Applying the inequality with $\lambda=1 / 5$, we obtain $y+\sqrt[4]{z} \geq y^{1 / 5} z^{1 / 5}$, and so $\sqrt[3]{y+\sqrt[4]{z}} \geq(y z)^{1 / 15}$. Taking $\lambda=1 / 16$, we obtain $x+(y z)^{1 / 15} \geq x^{1 / 16}(y z)^{1 / 16}$, so, $\sqrt[2]{x+\sqrt[3]{y+\sqrt[4]{z}} \geq}$ $(x y z)^{1 / 32}$.

