
2016 Gordon exam solutions

1. Is there a continuous function f :R −→ R which takes on rational values at the irrational points and

irrational values at the rational points?

Solution. No. Such a function would be nonconstant (since it has at least one rational value and at least
one irrational value), and take at most countably many values: at most countably many values at irrational
points (since the set of rational values is countable), and at most countably many values at rational points
(since the set of rational points is countable). However, the image of a nonconstant continuous function
contains an interval, so such a function must take on uncountably many values.

2. Each point of the three dimensional space R
3 is colored either red or blue. Prove that there exists an

equilateral triangle with side length 1 whose vertices have the same color.

Solution. Assume, in the way of contradiction, that the statement is false. Let
h be the height of a regular tetrahedron in R

3 with side length 1. (h =
√

2/3.)
Take any point A in R

3, and assume, w.l.o.g., that A is blue. Let X be any
point of R3 at the distance of 2h from A. Consider a polyhedron ABCDX
consisting of two regular tetrahedrons with side length 1, vertices at A and
X, and sharing the same base. If, say, the points B and C are blue, then the
equilateral triangle ABC has blue vertices; so, at most one of the points B,
C, D is blue, and the other two are red. But then the point X must be blue.
Hence, all points at the distance of 2h from A are blue.
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We have proved that any two points in R
3 at the distance of 2h from each other share the same color;

thus all spheres in R
3 of radius 2h are monochromatic, having the color of their centers. But if not all points

in R
3 have the same color, there are two points of different colors at the distance < 4h from each other, and

the spheres of radius 2h centered at these points have a nonempty intersection, contradiction.

3. Prove that for any n, d ∈ N and any vectors v1, . . . , vn ∈ R
d one has

n
∑

i,j=1

evi·vj ≥ n2.

Solution. For any x ∈ R we have ex ≥ 1 + x, so

n
∑

i,j=1

evi·vj ≥
n
∑

i,j=1

(1 + vi · vj) = n2 +

n
∑

i,j=1

vi · vj = n2 +
(

n
∑

i=1

vi

)

·
(

n
∑

i=1

vi

)

= n2 +
∥

∥

∥

n
∑

i=1

vi

∥

∥

∥

2

≥ n2.

4. Evaluate
∫

x2+y2≤R2 sinx
2 cos y2 dxdy.

Solution. Let I =
∫

x2+y2≤R2 sinx
2 cos y2 dxdy. Notice that I =

∫

x2+y2≤R2 sin y
2 cosx2 dxdy as well, so

I =
1

2

(

∫

x2+y2≤R2

sinx2 cos y2 dxdy +

∫

x2+y2≤R2

sin y2 cosx2 dxdy
)

=
1

2

∫

x2+y2≤R2

(

sinx2 cos y2 + sin y2 cosx2

)

dxdy.

Now, we have sinx2 cos y2 + sin y2 cosx2 = sin(x2 + y2), and passing to the polar coordinates we compute:

I =
1

2

∫

x2+y2≤R2

sin(x2 + y2) dxdy =
1

2

∫ 2π

θ=0

∫ R

r=0

sin(r2)r dr =
1

2
π

∫ R

0

sin(r2) dr2 =
1

2
π

∫ R2

0

sin(t) dt

=
1

2
π(1− cos(R2)).
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5. Prove that for z1, . . . , z4 ∈ C, max|z1|,...,|z4|≤1

∣

∣z1z3 + z1z4 + z2z3 − z2z4
∣

∣ = 2
√
2.

Solution. Using the Cauchy-Schwarz inequality,

∣

∣z1z3 + z1z4 + z2z3 − z2z4
∣

∣

2 ≤
(

|z1| · |z3 + z4|+ |z2| · |z3 − z4|
)2 ≤ (|z1|2 + |z2|2

)(

|z3 + z4|2 + |z3 − z4|2
)

≤ 2
(

|z3|2 + |z4|2 + z3z̄4 + z̄3z4 + |z3|2 + |z4|2 − z3z̄4 − z̄3z4
)

= 4(|z3|2 + |z4|2) = 8.

And for z1 = z4 = 1, z2 = i, z3 = −i we indeed have
∣

∣z1z3 + z1z4 + z2z3 − z2z4
∣

∣ = | − i+ 1 + 1− i| = 2
√
2.

Another solution. For any z1, z2, z3, z4 ∈ C with |z1|, |z2| ≤ 1 we have

∣

∣z1z3 + z1z4 + z2z3 − z2z4
∣

∣ ≤ |z1| · |z3 + z4|+ |z2| · |z3 − z4| ≤ |z3 + z4|+ |z3 − z4|.

Our goal is now to maximize this expression when |z3|, |z4| ≤ 1. After a rotation of C (the multiplication of
z3 and z4 by z4/|z4|), we may assume that z4 is real; let z4 = b and z3 = a cos t + ia sin t with 0 ≤ a, b ≤ 1
and t ∈ R. Then

(

|z3 + z4|+ |z3 − z4|
)2

=
(

√

(a cos t+ b)2 + a2 sin2 t+

√

(a cos t− b)2 + a2 sin2 t
)2

=
(

√

a2 + b2 + 2ab cos t+
√

a2 + b2 − 2ab cos t
)2

= 2a2 + 2b2 + 2
√

(a2 + b2)2 − 4a2b2 cos2 t

≤ 2a2 + 2b2 + 2
√

(a2 + b2)2 = 4a2 + 4b2 ≤ 8,

so |z3 + z4|+ |z3 − z4| ≤ 2
√
2.

And for z1 = z4 = 1, z2 = i, z3 = −i we indeed have
∣

∣z1z3+z1z4+z2z3−z2z4
∣

∣ = |− i+1+1− i| = 2
√
2.

6. Let A be a 2016 × 2016 matrix such that all diagonal entries of A are zero and the rest of entries are

equal to ±1. Prove that detA 6= 0.

Solution. Modulo 2, the matrix A is equal to A =

(0 1 1 ... 1
1 0 1 ... 1
1 1 0 ... 1...
...
...
...

...
1 1 1 ... 0

)

. It is easy to check that A
2
= I, so detA 6= 0,

so detA 6= 0 (since detA = detAmod 2).

Another solution. The matrix B =

(1 1 1 ... 1
1 1 1 ... 1
1 1 1 ... 1...
...
...
...

...
1 1 1 ... 1

)

over Z2 = Z/2Z has rank 1, it maps the entire space to

the one-dimensional space spanned by the vector e = (1, 1, . . . , 1), so all its eigenvalues except one are
equal to zero; also Be = 2016e = 0 in Z2, so the last eigenvalue is equal to zero as well. So, the matrix
A = Amod 2 = B − I has n eigenvalues equal to 1, so the determinant of A (which is the product of its
eigenvalues) is equal to 1 as well.
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