The Similarity and Hausdorff Dimensions

Ji Hoon Chun

July 26, 2012

Overview:

Intuition \longrightarrow Similarity dimension \longrightarrow Hausdorff dimension

Box dimension — Product formula — Totally disconnected spaces

Definition. A function $f : \mathbb{R}^n \to \mathbb{R}^n$ is a **similarity with ratio** r (r > 0) if |f(x) - f(y)| = r |x - y|. **Definition.** A set $A \in \mathbb{R}^n$ is **self-similar** if there exists a finite m and similarities f_1, \ldots, f_m with the ratio r such that $A = f_1(A) \cup \cdots \cup f_m(A)$.

Definition. Similarities f_1, \ldots, f_m are **separated** if there is a bounded open set O such that $f_1(O) \cup \cdots \cup f_m(O) \subseteq O$ and the $f_i(O)$'s are disjoint.

Definition. The similarity dimension for a self-similar set $S \subseteq \mathbb{R}^n$ with separated self-similarities is $\dim_S S = \frac{\log m}{-\log r}$, where m = the number of scaled copies of an object (scaled using similarities) needed to occupy the same space as the original object and r = the similarity ratio.

Definition. The **diameter** of a nonempty set $S \subseteq \mathbb{R}^n$ is $|S| = \sup \{|x - y| : x, y \in S\}$.

Definition. $\mathcal{H}^{a}_{\delta}(S) = \inf \left\{ \sum_{\alpha \in \Lambda} |S_{\alpha}|^{\alpha} : S \subseteq \bigcup_{\alpha \in \Lambda} S_{\alpha}, |S_{\alpha}| \le \delta \right\}$, where Λ is a countable index set.

Definition. The *a*-dimensional Hausdorff measure of a set $S \subseteq \mathbb{R}^n$ is $\mathcal{H}^a(S) = \lim_{\delta \to 0} \mathcal{H}^a_{\delta}(S)$.

Definition. The **Hausdorff dimension** of $S \subseteq \mathbb{R}^n$ is $\dim_H S = \inf \{a \ge 0 : \mathcal{H}^a(S) = 0\} = \sup \{a : \mathcal{H}^a(S) = \infty\}$, with the condition that $\sup \emptyset = 0$.

Theorem. For self-similar sets S (with separated self-similarities), $\dim_S S = \dim_H S$.

Proposition. Let $S \subseteq \mathbb{R}^n$ and $\mathbf{x}, \mathbf{y} \in S$. If a function $f : S \to \mathbb{R}^m$ satisfies the Lipschitz condition $|f(\mathbf{x}) - f(\mathbf{y})| \le C |\mathbf{x} - \mathbf{y}|$ for some $C \in [0, \infty)$, then $\dim_H f(S) \le \dim_H S$.

Theorem. If a set $S \subseteq \mathbb{R}^n$ (with at least 2 points) satisfies $\dim_H S < 1$, then A is totally disconnected. **Theorem.** Given two sets $S \subseteq \mathbb{R}^m$ and $T \subseteq \mathbb{R}^n$, $\dim_H (S \times T) \ge \dim_H S + \dim_H T$ and $\dim_H (S \times T) \le$

 $\dim_H S + \overline{\dim}_B T$, where $\overline{\dim}_B$ is the upper box dimension.

Corollary. If $\dim_H T = \overline{\dim}_B T$, then $\dim_H (S \times T) = \dim_H S + \dim_H T$.

Theorem. The product of an arbitrary collection of totally disconnected topological spaces is also totally disconnected.

Corollary. There exist totally disconnected sets of arbitrarily high Hausdorff dimension. *References:*

- Falconer, Kenneth, Fractal Geometry: Mathematical Foundations and Applications, Wiley, 2003.
- Patty, C. Wayne, Foundations of Topology, Jones and Bartlett, 2009.
- Stein, Elias M. and Shakarchi, Rami, *Real Analysis: Measure Theory, Integration, and Hilbert Spaces*, Princeton University Press, 2005.