- (1) $\frac{a^3}{4b}$ (2) (a) x = 3(b) $x = \frac{7}{4}$ (c) x = 4, -4, 6, -6(d) $-\frac{1}{3} < x < 1$ (e) x = 5(f) $-\frac{2}{3} \le x \le \frac{3}{2}$ (g) x < 2(3) $4\sqrt{5}$ (4) (a) Find $g[f(x)] = \frac{3+3x}{x+2}, x \ge -1$ (b) $\{y: 0 \le y < 3\}$ (c) $f^{-1}(x) = x^2 - 1$ domain of f^{-1} is $\{x : x \ge 0\}$ g^{-1} does not exist
- (5) Sketch the graphs of the following equations. (a) $x^2 + 9y^2 = 81$

(b) $y = \log_2 8x$

(c) $y = x^2 + 4x + 1$ (label vertex)

- (6) 0.756
- (7) Center (3,-4), r = 5
- (8) 1

(9)
$$\frac{-7}{\sqrt{53}}$$

- (10) 0
- (11) Graph these functions. Label your graphs carefully.

(a)
$$y = \sin(2x), 0 \le x \le 2\pi$$

(b) $y = \cos^{-1}(x)$ or $y = \arccos(x)$

- (12) $\sec \theta$
- (13) 60 feet
- (14) (a) $\sqrt{13}$

(b)
$$9 - 7i$$

(c)
$$\frac{3-11i}{10}$$

(15) $r = 8, \ \theta = \frac{\pi}{2} \pm 2k\pi$
(16) $n = 12$