Conceptual Problems Involving Partial Sums

The following questions provide practice with concepts involving partial sums. These are important and should be studied and understood in preparation for the second midterm.

I: True or False

Directions: CIRCLE ALL of the statements that MUST be TRUE. No explanation is necessary. Note that there may be several statements that are true for each question!

Problem 1: Suppose
$$\{a_n\}_{n\geq 1}$$
 is a sequence and $\sum_{n=1}^{\infty} a_n$ converges to $L > 0$. Let $s_n = \sum_{k=1}^n a_k$.
A. $\lim_{n \to \infty} a_n = L$ B. $\lim_{n \to \infty} a_n = 0$ C. $\lim_{n \to \infty} s_n = 0$
D. $\lim_{n \to \infty} s_n = L$ E. $\sum_{n=1}^{\infty} s_n$ MUST diverge. F. $\sum_{n=1}^{\infty} (a_n + 1) = L + 1$

G. The divergence test tells us $\sum_{n=1}^{\infty} a_n$ converges to L.

Solution:
A. FALSE - Since
$$\{a_n\}_{n\geq 1} = L$$
, $\{a_n\}_{n\geq 1}$ is a convergent series, so $\lim_{n\to\infty} a_n = 0$. Since $L > 0$, there is no way that $\lim_{n\to\infty} a_n = L$.
B. TRUE - If $\lim_{n\to\infty} a_n \neq 0$, the divergence test *immediately* implies $\sum_{n=1}^{\infty} a_n$ diverges!
 $\rightarrow \boxed{Anytime \text{ a series} \sum_{n=1}^{\infty} a_n \text{ converges, it MUST be true that } \lim_{n\to\infty} a_n = 0} \leftarrow$
C. FALSE
D. TRUE - Some essential facts are:
 $\boxed{\sum_{n=1}^{\infty} a_n \text{ converges iff } \lim_{n\to\infty} s_n = \lim_{n\to\infty} \sum_{k=1}^n a_k \text{ exists}}}$
When $\limsup_{n\to\infty} s_n \text{ does exist, } \sum_{n=1}^{\infty} a_n = \lim_{n\to\infty} s_n$.
The series $\sum_{n=1}^{\infty} a_n$ likewise diverges iff the $\lim_{n\to\infty} s_n$ does not exist.
Here, we are given $\sum_{n=1}^{\infty} a_n$ converges to $L > 0$, which tells us immediately that $\lim_{n\to\infty} s_n = L$.
E. TRUE - Since $\lim_{n\to\infty} s_n = L \neq 0$, the divergence test tells us immediately that $\sum_{n\to\infty}^{\infty} s_n$ MUST diverge.
F. FALSE - Since $\sum_{n=1}^{\infty} a_n$ converges, $\lim_{n\to\infty} a_n = 0$. Thus, $\lim_{n\to\infty} (a_n + 1) = 1$, and the divergence test immediately tells us that $\sum_{n=1}^{\infty} (a_n + 1)$ MUST diverge!
G. FALSE - The divergence test *NEVER* can be used to conclude that a series converges!

Problem 2: Suppose that $\{a_n\}_{n\geq 1}$ is a *decreasing* sequence. Let $s_n = \sum_{k=1}^n a_k$ and suppose $\lim_{n\to\infty} s_n$ does not exist.

A.
$$\lim_{n \to \infty} a_n$$
 does not exist.
B. $\sum_{k=1}^{\infty} a_k$ could converge.
C. $\sum_{n=1}^{\infty} s_n$ MUST diverge.
D. $\{s_n\}$ MUST be monotonic.
E. $\{s_n\}$ MUST be bounded.
F. $\lim_{n \to \infty} s_n = -\infty$
G. The divergence test applied to $\sum_{k=1}^{\infty} a_k$ would guarantee that $\sum_{k=1}^{\infty} a_k$ diverges.

Solution:

- A. <u>FALSE</u> A counterexample is a_k = 1/k. We know this is a decreasing sequence and that ∑[∞]_{k=1} 1/k diverges. However, lim_{n→∞} a_n = 0.
 B. <u>FALSE</u> The series ∑[∞]_{k=1} a_k diverges iff the lim_{n→∞} s_n does not exist.
 C. <u>TRUE</u> Since lim_{n→∞} s_n ≠ 0, the divergence test *immediately* implies ∑[∞]_{n=1} s_n diverges!
 D. <u>FALSE</u> Although {a_n} is monotonic, it does *NOT* imply {s_n} is monotonic! This is because the terms in the sequence {a_k} could change from positive to negative. For example, let a_k = 3 k, k ≥ 1. Then, computing the s_n:
 - $a_{1} = 2 \qquad s_{1} = a_{1} = \underline{2}$ $a_{2} = 1 \qquad s_{2} = a_{1} + a_{2} = \underline{3}$ $a_{3} = 0 \qquad s_{3} = a_{1} + a_{2} + a_{3} = \underline{3}$ $a_{4} = -1 \qquad s_{4} = a_{1} + a_{2} + a_{3} + a_{4} = \underline{2}$ $a_{5} = -2 \qquad s_{5} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} = \underline{0}$

Hence, s_n is *NOT* monotonic!

- E. \underline{FALSE} The harmonic series (i.e. the series described in the explanation of A.) provides a counterexample.
- F. \underline{FALSE} The harmonic series provides a counterexample.
- G. $\underline{\mathrm{FALSE}}$ The harmonic series provides a counterexample.

Problem 3: Suppose that $\{a_n\}_{n\geq 1}$ and $a_n > 0$ for all $n \geq 1$. Let $s_n = \sum_{k=1}^n a_k$ and suppose $\lim_{n\to\infty} s_n = L$. A. $\sum_{k=1}^{\infty} a_k = L$ B. $\lim_{n\to\infty} a_n = 0$ C. $\{s_n\}$ MUST be monotonic. D. $\{s_n\}$ MUST be bounded. E. $\sum_{n=1}^{\infty} (a_n - L) = 0$ F. $\sum_{n=1}^{\infty} s_n$ MUST diverge. G. The divergence test applied to $\sum_{k=1}^{\infty} a_k$ would guarantee that $\sum_{k=1}^{\infty} a_k$ converges. H. The Ratio Test can be used to determine that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$.

Solution:
A. TRUE -
$$\sum_{n=1}^{\infty} a_n$$
 converges iff $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k$ exists, and in this case, we have
 $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^{\infty} a_k$.
B. TRUE - If $\lim_{n \to \infty} a_n \neq 0$, the divergence test *immediately* implies $\sum_{n=1}^{\infty} a_n$ diverges!
 $\rightarrow \boxed{Anytime \text{ a series } \sum_{n=1}^{\infty} a_n \text{ converges, it MUST be true that $\lim_{n \to \infty} a_n = 0} \leftarrow$
C. TRUE - Note that $s_n = s_{n-1} + a_n$. Since $a_n > 0$ for all $n \ge 1$, then $s_n > s_{n-1}$.
D. TRUE - Note that $s_n = s_{n-1} + a_n$. Since $a_n > 0$ for all $n \ge 1$, then $s_n > s_{n-1}$.
D. TRUE - Since $\{s_n\}$ is increasing, if it were not bounded, it would not have a limit
(since a bounded, monotonic sequence $MUST$ have a limit).
E. FALSE - Since it has been established that $\sum_{n=1}^{\infty} a_n$ converges, $\lim_{n \to \infty} a_n = 0$, and thus:
 $\lim_{n \to \infty} (a_n - L) = -L$.
Also, since s_n has been established to be increasing, $L = \lim_{n \to \infty} s_n > s_1 = a_1 > 0$.
Hence, $\lim_{n \to \infty} (a_n - L) = -L \neq 0$, so $\sum_{n=1}^{\infty} (a_n - L)$ MUST diverge!
F. TRUE - $\lim_{n \to \infty} s_n = L \neq 0$, and the divergence test *immediately* implies $\sum_{n=1}^{\infty} s_n$ diverges.
G. FALSE - The ratio test may *NOT* apply to the series in question! There are conver-
gent series for which $\lim_{n \to \infty} \frac{a_n + 1}{a_n} = 1!$
For a specific example, consider $\sum_{k=1}^{\infty} \frac{1}{k^2 + k}$. This sum can be shown to be telescoping
by using partial fractions to justify the result below:
 $\frac{1}{k^2 + k} = \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$
By noting that $s_n = 1 - \frac{1}{n+1}$, it is clear that this series converges to 1. However, it
can be shown using the Ratio Test that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1!$$

II: Short Answer

Directions: Provide a brief response to the following questions.

Problem 4 (Exploring the Relationship Between $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} s_k$)

For a sequence $\{a_n\}_{n\geq 1}$ let $s_n = \sum_{k=1}^n a_k$ denote its sequence of partial sums.

- a) Given that $\sum_{k=1}^{\infty} a_k$ converges, what can be said about $\sum_{k=1}^{\infty} s_k$?
- b) Given that $\sum_{k=1}^{\infty} a_k$ diverges, what can be said about $\sum_{k=1}^{\infty} s_k$?
- c) Given that $\sum_{k=1}^{\infty} s_k$ converges, what can be said about $\sum_{k=1}^{\infty} a_k$?
- d) Given that $\sum_{k=1}^{\infty} s_k$ diverges, what can be said about $\sum_{k=1}^{\infty} a_k$?

Solution: Thinking about $\sum_{k=1}^{\infty} s_k$ is very difficult conceptually, but we do have several important facts:

- <u>Fact 1</u>: Anytime we are told about convergence or divergence of a series, we know something about the sequence of partial sums:
 - i. $\sum_{k=1}^{\infty} a_k$ converges iff $\lim_{n \to \infty} s_n$ exists, and in this case: $\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n$. ii. $\sum_{k=1}^{\infty} a_k$ diverges iff $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k$ does not exist.
- <u>Fact 2</u>: If $\sum_{k=1}^{\infty} b_k$ converges, then $\lim_{k \to \infty} b_k = 0$.
- a) Since $\sum_{k=1}^{\infty} a_k$ converges, say $\sum_{k=1}^{\infty} a_k = L$. Then by Fact 1, $\lim_{n \to \infty} s_n = L$.
 - i. If $L \neq 0$, then $\lim_{n\to\infty} s_n = L \neq 0$, so $\sum_{k=1}^{\infty} s_k$ would diverge by the divergence test.
 - ii. If L = 0, then $\sum_{k=1}^{\infty} s_k$ could converge.

Further Thinking: Here are examples of an instance where the series $\sum_{k=1}^{\infty} s_k$ converges and an instance in which it diverges.

Ex 1: An example where $\sum_{k=1}^{\infty} s_k$ converges occurs when $s_k = \frac{1}{k^2 + k}$. In this case, each a_k can be found via the formula $a_k = s_k - s_{k-1}$. Note this formula is not saving much:

Note this formula is not saying much:

$$s_k = a_1 + \dots + a_{k-1} + a_k$$

 $s_{k-1} = a_1 + \dots + a_{k-1}$

Subtracting gives $s_k - s_{k-1} = a_k$. This may look intimidating, but conceptually, the formula $a_k = s_k - s_{k-1}$ is obvious! So:

$$a_k = s_k - s_{k-1} = \frac{1}{k^2 + k} - \frac{1}{(k-1)^2 + k - 1}$$

Ex 2: An example where $\sum_{k=1}^{\infty} s_k$ diverges occurs when $s_k = \frac{1}{k}$. In this case,

$$a_k = s_k - s_{k-1} = \frac{1}{k} - \frac{1}{k-1} = -\frac{1}{k^2 - k}$$

- b) Since $\sum_{k=1}^{\infty} a_k$ diverges, we know that $\lim_{n\to\infty} s_n$ does not exist by Fact 1. Thus, $\lim_{n\to\infty} s_n \neq 0$, so $\boxed{\sum_{k=1}^{\infty} s_k}$ diverges by the divergence test.
- c) Since $\sum_{k=1}^{\infty} s_k$ converges, we know that $\lim_{n \to \infty} s_n = 0$ by the above. But, note that since $\lim_{n \to \infty} s_n = 0$, this means precisely that $\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n = 0$.

Hence, $\sum_{k=1}^{\infty} a_k$ converges to 0.

- d) Since $\sum_{k=1}^{\infty} s_k$ diverges, we know very little about $\lim_{n\to\infty} s_n$.
 - i. It is possible that the limit exists, in which case, say $\lim_{n\to\infty} s_n = L$. Then, $\sum_{k=1}^{\infty} a_k = L$. Note that any series $\sum_{k=1}^{\infty} a_k$ that converges to any value other than 0 will give rise to a sequence of partial sums for which $\sum_{k=1}^{\infty} s_k$ diverges (since in this case $\lim_{n\to\infty} s_n = L \neq 0$, and thus $\sum_{k=1}^{\infty} s_k$ would diverge by the divergence test).
 - ii. It is possible that $\lim_{n\to\infty} s_n$ does not exist, in which case $\sum_{k=1}^{\infty} a_k$ diverges by Fact 1.

Further Thinking: An easy example of a series that converges to L can be made from a previous example. Choose L and consider the series $\sum_{k=1}^{\infty} \frac{L}{k^2 + k}$. This was discussed in Problem 3, H. and can easily be shown to converge to L.

Problem 5 For a sequence $\{a_n\}_{n\geq 1}$ let $s_n = \sum_{k=1}^n a_k$ denote its sequence of partial sums. Now, suppose that $\{a_n\}_{n\geq 1}$ is a sequence such that $s_n = \frac{2n-1}{3n+1}$.

- a) Find $a_1 + a_2 + a_3 + a_4$.
- b) Find $a_5 + a_6$.
- c) Determine whether $\lim_{n \to \infty} a_n$ exists. If it does, find its value.
- d) Determine whether $\lim_{n \to \infty} s_n$ exists. If it does, find its value.
- e) Determine whether $\sum_{k=1}^{\infty} a_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.
- f) Determine whether $\sum_{k=1} s_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.

Solution:

a) Note by definition that $a_1 + a_2 + a_3 + a_4 = s_4$. Using the formula given for s_n with n = 4 gives:

$$a_1 + a_2 + a_3 + a_4 = \frac{2(4) - 1}{3(4) + 1} = \boxed{\frac{7}{13}}$$

b) Note that by definition:

$$s_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$$

$$s_4 = a_1 + a_2 + a_3 + a_4$$

so $a_5 + a_6 = s_6 - s_4$. Using the formula for s_n , we have:

$$s_6 = \frac{2(6) - 1}{3(6) + 1} = \frac{11}{19}, \qquad s_4 = \frac{2(4) - 1}{3(4) + 1} = \frac{7}{13}$$

Thus, $a_5 + a_6 = \frac{11}{19} - \frac{7}{13}$.

c) To determine this, we actually note that:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{2n - 1}{3n + 1} = \frac{2}{3}$$

Since $\lim_{n\to\infty} s_n$ exists, $\sum_{k=1}^{\infty} a_k$ converges, and thus $\lim_{n\to\infty} a_n = 0$.

d) From the above work, $\boxed{\lim_{n \to \infty} s_n} = \frac{2}{3}$.

e) In c), we showed that $\sum_{k=1}^{\infty} a_k$ converges. Since $\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n$ and we determined that $\lim_{n \to \infty} s_n = \frac{2}{3}$, we have $\boxed{\sum_{k=1}^{\infty} a_k}$ converges to $\frac{2}{3}$. f) We showed that $\lim_{n \to \infty} s_n = \frac{2}{3}$, so $\boxed{\sum_{k=1}^{\infty} s_k}$ diverges by the Divergence Test $\boxed{}$. **Problem 6** For a sequence $\{a_n\}_{n\geq 1}$ let $s_n = \sum_{k=1}^n a_k$ denote its sequence of partial sums. Now, suppose that $\{a_n\}_{n\geq 1}$ is a sequence such that $s_n = \frac{4n^2 + 9}{1-2n}$.

- a) Find $a_1 + a_2 + a_3$.
- b) Find $a_8 + a_9 + a_{10}$.
- c) Determine whether $\sum_{k=1}^{\infty} a_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.
- d) Determine whether $\sum_{k=1}^{\infty} s_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.

Solution:

Thus,

a) Note by definition that $a_1 + a_2 + a_3 = s_3$. Using the formula given for s_n with n = 3 gives:

$$a_1 + a_2 + a_3 = \frac{4(3)^2 + 9}{1 - 2(3)} = \boxed{-9}.$$

b) Note that by definition:

$$s_{10} = a_1 + \dots + a_7 + a_8 + a_9 + a_{10}$$
$$s_7 = a_1 + \dots + a_7$$

so $a_8 + a_9 + a_{10} = s_{10} - s_7$. Using the formula for s_n , we have:

$$s_1 0 = \frac{4(10)^2 + 9}{1 - 2(10)} = -\frac{409}{19}, \qquad s_7 = \frac{4(7)^2 + 9}{1 - 2(7)} = -\frac{205}{13}$$
$$\boxed{a_8 + a_9 + a_{10} = -\frac{409}{19} + \frac{205}{13}}.$$

c) To determine this, we note that:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{4n^2 + 9}{1 - 2n} = \infty.$$

Since $\lim_{n\to\infty} s_n$ does not exist, $\sum_{k=1}^{\infty}$

$$a_k$$
 diverges by the Divergence Test

d) We showed that
$$\lim_{n \to \infty} s_n = \infty$$
, so $\sum_{k=1}^{\infty} s_k$ diverges by the Divergence Test