Worksheet #9: Parametric Equations and Polar Coordinates.

I. Parametric Equations

1. Eliminate the parameter and find a Cartesian representation of the given curves. Then, make a sketch and indicate the positive orientation.

 a) \(x = 2t^2, \ y = 3t \)

 b) \(x = 4 \sin t + 1, \ y = 4 \cos t \)

 c) \(x = 4e^t, \ y = e^{2t} \)

 d) \(x = 2 \cos t, \ y = \sin t \)

2. Give a parameterization of the circle \(x^2 + (y-1)^2 = 4 \), that:

 a) Starts at \((0,3)\) when \(t=0\).

 b) Is traced out clockwise.

 c) Starts at \((2,1)\) and is traced out twice between \(t=0\) and \(t=1\).

3. Suppose \(x = at \) and \(y = bt \).

 a) Show that this curve is the line \(y = \frac{b}{a} x \).

 b) Find another parameterization of this curve that starts at \(y = b \) when \(t=0 \).

4. Suppose \(x = t^3 - 3t, \ y = t^2 \).

 a) Find \(\frac{dy}{dx} \) in terms of \(t \).

 b) Find all horizontal and vertical tangent lines.

 c) Find the tangent line at \(t = 2 \).

 d) Find the tangent line at \((x,y) = (2,1)\).

5. Suppose \(x = t^2 - 6t + 1, \ y = \frac{1}{2}t^3 - t \).

 a) Find \(\frac{dx}{dt} \) in terms of \(t \).

 b) Find all vertical and horizontal tangent lines.
c) Find the tangent line at \(t=1 \).
d) Find the tangent line at \((x, y) = (1, 12)\).

II. Polar Coordinates

6. Express the point \((x, y) = (0, 1)\) in polar coordinates in 4 different ways.

7. Express the point \((x, y) = (-\sqrt{2}, -\sqrt{2})\) in polar coordinates in 4 different ways.

8. Express the point \((r, \theta) = (4, \frac{\pi}{3})\) in Cartesian coordinates.

9. Given the following curves \(r=f(\theta) \), express the curves in Cartesian coordinates.
 a) \(r = 4 \sec \theta \)
 b) \(r^2 = \tan \theta \)
 c) \(l = \sin \theta \cos \theta \)
 d) \(r = 5 \)

10. Let \(r = 2 \cos \theta \)
 a) Find \(\frac{dy}{dx} \) in terms of \(\theta \)
 b) Find the vertical and horizontal tangent lines in Cartesian coordinates. Indicate the points of tangency in Cartesian coordinates.
 c) Find the tangent line when \(\theta = \frac{\pi}{6} \).

11. Repeat 10(a), b) for \(r = 2 + 2\sin \theta \)

12. Find the area inside the curve \(r = \sqrt{\cos \theta} \) and inside the circle \(r = \frac{1}{\sqrt{2}} \).

13. Find the area of the region inside \(r = 4 \cos 2\theta \) and outside \(r = 2 \).

14. Set up an integral that represents the area inside \(r^2 = 2 \sin 2\theta \) and outside \(r = 1 \).

15. Set up an integral that represents the area between \(r = 1 + \sin \theta \) and \(r = 1 + \cos \theta \) in \(QT \).