This exam contains 8 pages (including this cover page) and 6 problems. Check to see if any pages are missing. The exam is worth 100 points. The value of each question is listed below.

The following rules apply:

• You have **55 Minutes** to complete this exam.
• You may **not** use your books or notes on this exam.
• Please write clearly.
• You are required to show your work on Problems 4, 5, and 6. No work is required for Problems 1, 2, or 3.
• **Partial Credit**: Incorrect answers with supporting work may receive partial credit. Problems 4, 5, and 6 will receive no credit if there is no supporting work. Partial credit will not be awarded on Problems 1, 2, or 3.
• Calculators are permitted except for calculators that have symbolic algebra or calculus capabilities. In particular, the following calculators (and their upgrades) are not permitted: TI-89, TI-92, TI-Nspire CX CAS, and HP-49. In addition, you may not use PDAs, laptops, or cell phones.
• Unless otherwise specified, write your answers in **exact form** (i.e., not a decimal approximation).
• Please write your answers in the boxes provided unless otherwise instructed.
• A random sample of graded exams will be copied before being returned.

<table>
<thead>
<tr>
<th>Page</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. For each of the following multiple choice questions, circle the correct answer. You do not need to show your work.

(a) (5 points) A certificate of deposit is purchased for $4000. If the certificate earns interest at a rate of 3%, compounded monthly, what is the value of the certificate at the end of 4 years?

- (a) $4040.15
- (b) $4502.04
- (c) $4509.31
- (d) $4121.66
- (e) $16529.01
- (f) None of the above

(b) (5 points) Find the inverse function f^{-1} to the function f given below with the specified restriction.

$$f(x) = (4x - 3)^2$$

for $x \geq \frac{3}{4}$

- (a) $f^{-1}(x) = \sqrt{4x - 3}$
- (b) $f^{-1}(x) = \frac{\sqrt{x} + 3}{4}$
- (c) $f^{-1}(x) = 8(4x - 3)$
- (d) $f^{-1}(x) = \frac{1}{(4x - 3)^2}$
- (e) $f^{-1}(x) = \frac{x + 3}{4}$
- (f) None of the above

(c) (5 points) Which of the following equations is equivalent to

$$\log_2(x) = y$$

- (a) $2^x = y$
- (b) $y^x = 2$
- (c) $x^y = 2$
- (d) $x^2 = y$
- (e) $2^y = x$
- (f) None of the above

(d) (5 points) Suppose $4000 is invested at an annual rate of 7%, compounded continuously. Find the compound amount after 6 years, rounded to the nearest cent.

- (a) 2628.19
- (b) 2665.37
- (c) 4290.03
- (d) 6002.92
- (e) 6087.85
- (f) None of the above
2. For each of the following multiple choice questions, circle the correct answer. You do **not** need to show your work.

(a) (5 points) Solve for x in the equation below.

$$\log_3(x + 2) = -1$$

(a) $x = -2$ (b) $x = \frac{-17}{9}$ (c) $x = \frac{-5}{3}$

(d) $x = 1$ (e) $x = 7$ (f) None of the above

(b) (10 points) For both of the following parts, consider the function

$$h(x) = 2x^2 + 3x - 2$$

i. The vertex is

(a) $(-1.5, -2)$ (b) $(-0.75, -3.125)$ (c) $(-0.333, -2.778)$

(d) $(1.5, 7)$ (e) $(0.75, 1.375)$ (f) $(0.333, 0.778)$

(g) None of the above

ii. Find all x-intercepts. You may need to circle more than one

(a) -4 (b) -2 (c) -0.5

(d) 4 (e) 2 (f) 0.5

(g) None of the above
3. For each of the following multiple choice questions, circle the correct answer. You do **not** need to show your work.

(a) (5 points) Solve for x in the equation below.

$$\log_4(x - 3) = 1 + \log_4(2)$$

(a) $x = 5$
(b) $x = 6$
(c) $x = 8$

(d) $x = 9$
(e) $x = 11$
(f) None of the above

(b) (5 points) An investment earns interest at a nominal rate of 3%, compounded semiannually. Find the effective rate as a percent, rounded to two decimal places.

(a) 1.50%
(b) 2.96%
(c) 3.00%

(d) 3.02%
(e) 6.09%
(f) None of the above

(c) (5 points) A debt of $800 is due in 5.5 years. The interest rate is 9%, compounded monthly. Find the present value of the debt, rounded to the nearest cent.

(a) 488.56
(b) 498.02
(c) 535.12

(d) 767.79
(e) 1309.98
(f) None of the above
4. Solve the equations. Show all of your work. Solutions by calculator will receive no credit.
 (a) (10 points) $\log_x (3x - 8) = 1$

 $x =$

 (b) (10 points) $\ln(x - 2) + \ln(2x + 1) = \ln(7)$

 $x =$

5. (6 points) Express the following as a single logarithm:

 \[\frac{1}{3} \ln(x) + 3 \ln(x^2) - 3 \ln(x - 2) - 3 \ln(x - 4) \]
6. Solve the following interest theory questions. Show all of your work.

(a) (8 points) Suppose $500 is deposited into an account that earns interest at a rate of 7%, compounded continuously. Find the time t (in years) at which the value of the account is $900. Round t to two decimal places (e.g. 12.34 years).

$$t =$$

(b) (8 points) An investment earns interest at an effective rate of 7%. Find the nominal rate if interest is compounded monthly. Write your answer as a percent rounded to two decimal places (e.g. 12.34%).

Answer =

(c) (8 points) A debt of $800 is due in 8 years. The present value of the debt is $500. Find the effective rate of interest r. Write r as a percent rounded to two decimal places (e.g. 12.34%).

$$r =$$
Scrap work
Some Useful Formulas

\[S = P (1 + r)^n \]

\[S = Pe^{rt} \]

\[P = S (1 + r)^{-n} \]

\[P = Se^{-rt} \]

\[r_e = \left(1 + \frac{r}{n} \right)^n - 1 \]

\[r_e = e^r - 1 \]

\[A = Ra_{\overline{mr}} = R \cdot \left[\frac{1 - (1 + r)^{-n}}{r} \right] \]

\[R = \frac{A}{a_{\overline{mr}}} = A \cdot \left[\frac{r}{1 - (1 + r)^{-n}} \right] \]

\[S = R s_{\overline{mr}} = R \cdot \left[\frac{(1 + r)^n - 1}{r} \right] \]

\[R = \frac{S}{s_{\overline{mr}}} = S \cdot \left[\frac{r}{(1 + r)^n - 1} \right] \]