Instructions:

- You have 55 minutes to complete this exam. It consists of 10 questions on 8 pages including this cover sheet and is worth a total of 100 points. The value of each question is listed below and with each question. Partial credit might not be awarded on some questions.

- You may not use any books, notes or self-supplied scratch paper during this exam.

- Calculators are permitted EXCEPT those calculators that have symbolic algebra or calculus capabilities. In particular, the following calculators and their upgrades are not permitted: TI-89, TI-92, and HP-49. In addition, neither PDAs, laptops nor cell phones are permitted.

- Make sure to read each question carefully.

- Please write clearly and make sure to justify your answers. Correct answers with no supporting work may receive no credit. If you find a solution to a problem using a graph from your calculator (where appropriate), you need to sketch that graph and label all relevant information.

- Unless otherwise specified, make sure your answers are in exact form (i.e. not decimal approximations).

- Make sure to circle your answers.

- A random sample of graded exams will be xeroxed before being returned.

<table>
<thead>
<tr>
<th>Question:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>9</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>18</td>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
</tr>
</tbody>
</table>
(1). Suppose that \(f(x) = 5x^2 - 20x + 3 \)

(a) (7 points) Write \(f(x) \) in vertex form.

(b) (2 points) Identify the vertex.

(2). The following questions concern revenue.

(a) (2 points) Suppose that a manufacturer is able to sell \(n(p) = 80 - 3p \) items when the unit price (in dollars) is \(p \). Find a formula for the revenue \(R(p) \) if the unit price is set at \(p \) dollars.

(b) (4 points) Suppose that the revenue (in dollars) for selling \(q \) laptops is given by \(R(q) = 195 + 30q - q^2 \). Find the number of laptops sold which will maximize the revenue.
3. The graph of the function h is given below.

(a) (4 points) Use interval notation to write the intervals over which h is increasing.

(b) (4 points) Use interval notation to write the intervals over which h is decreasing.

(c) (4 points) Identify the location and value of any relative maximums of h.

(d) (2 points) Identify the location and value of any relative minimums of h.

4. Use the following table of values for f and g to find the value of the indicated expressions (indicate if the given expression is undefined)

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>-3</td>
<td>10</td>
</tr>
<tr>
<td>$g(x)$</td>
<td>4</td>
<td>-4</td>
<td>8</td>
<td>5</td>
<td>-5</td>
<td>3</td>
</tr>
</tbody>
</table>

(a) (2 points) $(f \circ g)(2) =$ ______

(b) (2 points) $(f \cdot g)(3) =$ ______

(c) (2 points) $(g \circ f)(2) =$ ______

(d) (2 points) $\left(\frac{g}{f}\right)(-1) =$ ______
(5). (7 points) Divide the following polynomials. Note: synthetic division will not work.

\[
\frac{3x^3 - 4x^2 + 2x - 5}{x^2 + 2}
\]

Quotient polynomial = \(Q(x) = \) ________________

Remainder polynomial = \(R(x) = \) ________________

(6). (9 points) A soccer ball is hit from the ground and lands 12 meters away from where it was hit. Furthermore, it reached a maximum height of 9 meters during its travel. Assuming that the path of the ball is a parabola (ignoring air resistance), find a quadratic function to model the height of the ball when it has traveled \(x \) meters horizontally.
(7). The graph of the polynomial g is given below

(a) (6 points) List the roots of g and circle the correct answer whether their multiplicities are odd or even.
 (note: not all spaces may be filled in)

 root: $x =$ ______ multiplicity: ODD / EVEN
 root: $x =$ ______ multiplicity: ODD / EVEN
 root: $x =$ ______ multiplicity: ODD / EVEN
 root: $x =$ ______ multiplicity: ODD / EVEN

(b) (1 point) Circle the correct answer: Is the leading coefficient of g positive or negative?

 Leading coefficient: POSITIVE / NEGATIVE

(c) (1 point) Circle the correct answer: Is the degree of g odd or even?

 Degree: ODD / EVEN
(8). Suppose that

\[P(x) = x^3 + 4x^2 - 7x - 10 \]

(a) (5 points) Find a polynomial \(Q(x) \) such that \((x - 2)Q(x) = P(x) \) using polynomial division.

(b) (5 points) Find a polynomial \(S(x) \) such that \((x + 5)S(x) = P(x) \) using polynomial division.
(9). Given the rational function \(r(x) = \frac{(x + 1)^2}{(x + 3)(x - 4)^2} \).

(a) (2 points) Find the y-intercept(s), state if there are none.

(b) (3 points) Find the x-intercept(s), state if there are none.

(c) (2 points) Find the equation of any vertical asymptotes.

(d) (3 points) Find the equation of any horizontal asymptotes.

(e) (8 points) Sketch a graph of \(r \), making sure to plot and label all information from parts (a)-(d).
(10). The piecewise defined function $P(x)$ is given by:

$$P(x) = \begin{cases}
-2 & \text{if } x < -4 \\
-x^2 - 8 & \text{if } -4 \leq x < 2 \\
x - 5 & \text{if } x \geq 2
\end{cases}$$

(a) (4 points) Find the following:

(i). $P(-5) = \underline{\quad}$
(ii). $P(-2) = \underline{\quad}$
(iii). $P(2) = \underline{\quad}$
(iv). $P(7) = \underline{\quad}$

(b) (7 points) Plot and label your points from part (a) and then sketch the graph of $y = P(x)$.

[Graph with labeled axes and grid]