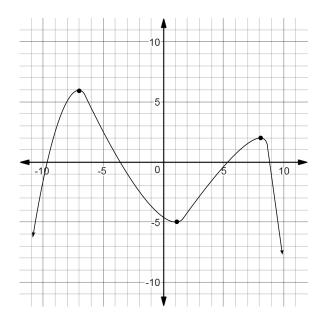
Math 1148	Name:	
Autumn 2017 Midterm 2		
Form A	Lecturer:	
	Rec. Instructor:	
	Rec. Time:	

Instructions:

- You have **55 minutes** to complete this exam. It consists of 10 questions on 8 pages including this cover sheet and is worth a total of 100 points. The value of each question is listed below and with each question. Partial credit might not be awarded on some questions.
- You may not use any books, notes or self-supplied scratch paper during this exam.
- Calculators are permitted EXCEPT those calculators that have symbolic algebra or calculus capabilities. In particular, the following calculators and their upgrades are not permitted: TI-89, TI-92, and HP-49. In addition, neither PDAs, laptops nor cell phones are permitted.
- Make sure to read each question carefully.
- Please write clearly and make sure to justify your answers. Correct answers with no supporting work may receive no credit. If you find a solution to a problem using a graph from your calculator (where appropriate), you need to sketch that graph and label all relevant information.
- Unless otherwise specified, make sure your answers are in exact form (i.e. not decimal approximations).
- Make sure to circle your answers.
- A random sample of graded exams will be xeroxed before being returned.


Question:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	Total
Points:	9	6	14	8	7	9	8	10	18	11	100
Score:											

- (1). Suppose that $f(x) = 5x^2 20x + 3$
 - (a) (7 points) Write f(x) in vertex form.

(b) (2 points) Identify the vertex.

- (2). The following questions concern revenue.
 - (a) (2 points) Suppose that a manufacturer is able to sell n(p) = 80 3p items when the unit price (in dollars) is p. Find a formula for the revenue R(p) if the unit price is set at p dollars.

(b) (4 points) Suppose that the revenue (in dollars) for selling q laptops is given by $R(q) = 195 + 30q - q^2$. Find the number of laptops sold which will maximize the revenue. (3). The graph of the function h is given below.

(a) (4 points) Use interval notation to write the intervals over which h is increasing.

- (b) (4 points) Use interval notation to write the intervals over which h is decreasing.
- (c) (4 points) Identify the location and value of any relative maximums of h.
- (d) (2 points) Identify the location and value of any relative minimums of h.
- (4). Use the following table of values for f and g to find the value of the indicated expressions (indicate if the given expression is undefined)

X	-2	-1	1	2	3	5
f(x)	7	2	3	6	-3	10
g(x)	4	-4	8	5	-5	3

- (a) (2 points) $(f \circ g)(2) =$ _____
- (**b**) (2 points) $(f \cdot g)(3) =$ _____
- (c) (2 points) $(g \circ f)(2) =$ _____
- (**d**) (2 points) $\left(\frac{g}{f}\right)(-1) =$ _____

(5). (7 points) Divide the following polynomials. Note: synthetic division will not work.

$$\frac{3x^3 - 4x^2 + 2x - 5}{x^2 + 2}$$

Quotient polynomial = Q(x) = _____

Remainder polynomial = R(x) = ______

(6). (9 points) A soccer ball is hit from the ground and lands 12 meters away from where it was hit. Furthermore, it reached a maximum height of 9 meters during its travel. Assuming that the path of the ball is a parabola (ignoring air resistance), find a quadratic function to model the height of the ball when it has traveled x meters horizontally.

(7). The graph of the polynomial g is given below

(a) (6 points) List the roots of g and circle the correct answer whether their multiplicities are odd or even. (note: not all spaces may be filled in)

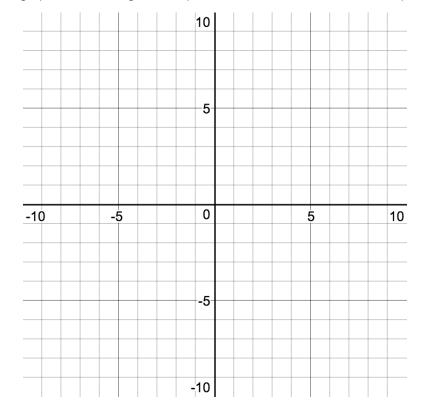
root: <i>x</i> =	multiplicity: ODD / EVEN
root: <i>x</i> =	multiplicity: ODD / EVEN
root: <i>x</i> =	multiplicity: ODD / EVEN
root: <i>x</i> =	multiplicity: ODD / EVEN

(b) (1 point) Circle the correct answer: Is the leading coefficient of g positive or negative?

Leading coefficient: POSITIVE / NEGATIVE

(c) (1 point) Circle the correct answer: Is the degree of g odd or even?

Degree: ODD / EVEN

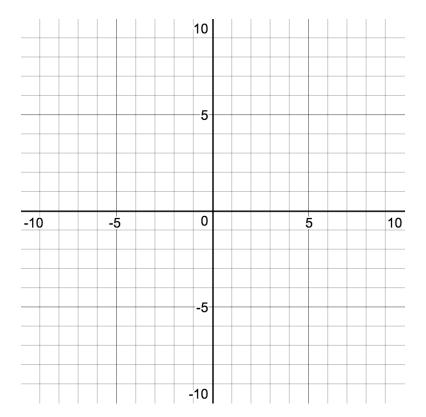

(8). Suppose that

$$P(x) = x^3 + 4x^2 - 7x - 10$$

(a) (5 points) Find a polynomial Q(x) such that (x - 2)Q(x) = P(x) using polynomial division.

(b) (5 points) Find a polynomial S(x) such that (x + 5)S(x) = P(x) using polynomial division.

- (9). Given the rational function $r(x) = \frac{(x+1)^2}{(x+3)(x-4)^2}$,
 - (a) (2 points) Find the y-intercept(s), state if there are none.
 - (b) (3 points) Find the x-intercept(s), state if there are none.
 - (c) (2 points) Find the equation of any vertical asymptotes.
 - (d) (3 points) Find the equation of any horizontal asymptotes.



(e) (8 points) Sketch a graph of r, making sure to plot and label all information from parts (a)-(d).

(10). The piecewise defined function P(x) is given by:

$$P(x) = \begin{cases} -2 & \text{if } x < -4 \\ x^2 - 8 & \text{if } -4 \le x < 2 \\ x - 5 & \text{if } x \ge 2 \end{cases}$$

- (a) (4 points) Find the following:
 - (i). P(-5) = (ii). P(-2) = (iii). P(2) = (iv). P(7) =
- (b) (7 points) Plot and label your points from part (a) and then sketch the graph of y = P(x).

