
What is Morley’s Miracle?

Charles E. Baker

Presented July 5, 2012

Contents

1 Basic Trigonometric Proof 1

2 John Conway’s Proof: only Euclidean Geometry 7

Overview

Let ∆ABC be a triangle, and let the radian measure of these angles bem(]CAB) =

3α, m(]ABC) = 3β, and m(]BCA) = 3γ, so that α+ β + γ = π/3.1 We trisect

each (interior) angle of the triangle, and take the intersections of the proximal or

adjacent trisectors; for example, to choose the intersection between a trisector of

the angle at A and the angle at B, we choose the trisector from A closer to B,

and the trisector from B closer to A. This gives us three points: one between a

trisector from B and a trisector from C (labeled P ), one between a trisector from

C and a trisector from A (labeled Q) and one between a trisector from A and a

trisector from B (labeled R). See Figure 1.

1For the duration of this article, all angle measure will be in radians.

Figure 1: The (First) Morley Triangle, ∆PQR. Source: [2]
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Theorem 0.1 (Morley’s Theorem) ∆PQR is equilateral.

This theorem has many, many proofs and extensions ([8] has over 100 refer-

ences), which would make fine material for a future “What is . . . ?” talk.

1 Basic Trigonometric Proof

Let ∆ABC be the triangle, withm(]CAB) = 3α, m(]ABC) = 3β, andm(]BCA) =

3γ, so that α+ β + γ = π/3. Our ultimate goal is to create formulae for the side-

lengths PR that is symmetric in α, β, and γ, so that the corresponding construc-

tions for PQ and QR, using the corresponding sides, will give the same answer;

therefore, the side-lengths of ∆PQR will be equal.2 Our first goal is to construct

expressions for the side lengths BC, CA, AB in term of α, β, γ respectively. To

do so, we use the circumcircle of the triangle.

Fact 1.1 There is a circumcircle of ∆ABC; that is, a circle touching the triangle

∆ABC at only the three points A, B, C, and such that ∆ABC is contained inside

the given circle.3

Having constructed the circumcircle with center O and radius r, we might as

well scale the whole figure by the factor of 1
r , so that the rescaled circle has radius

1. We know that m(∠BCA) = 3γ, and this angle encompasses the arc
_
AB. By

basic circle geometry, the measure of a central angle encompassing an arc is twice

the measure of an angle encompassing the same arc and whose vertex is placed

on the circumference of the circle; in other words,

m(∠BOA) = 2m(∠BCA) = 6γ.

See Figure 2. By the Law of Cosines,

(AB)2 = (AO)2 + (AB)2 − 2(AO)(AB) cos(m(∠BOA)).

Yet by our scaling, the circle has radius 1, and AO and AB are radii; hence,

(AB)2 = 1 + 1− 2 cos(6γ)

= 4

(
1− cos2(3γ)

2

)
= 4 sin2(3γ) (by the Half-Angle Formula)

AB = 2 sin(3γ) (since AB ≥ 0 and 3γ < π).

2This section is adapted from [2].
3This assumes that the points are not collinear.
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Figure 2: Central Angle of the Circumcircle
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Figure 3: ∆BPC

Thus, the side opposite ∠BCA has measure 2 sin(3γ) = 2 sin(m(]BCA)); simi-

larly, we have

BC = 2 sin(3α) = 2 sin(m(]CAB))

AC = 2 sin(3β) = 2 sin(m(]ABC))

Thus, we have the side-lengths of the triangle in terms of the angles of the

triangle. Referring back to Figure 1, our next goal is to find expressions for the

lengths of the intermediate sides BP , CP , BR, etc. To start, we will concentrate

our attention on ∆BPC. See Figure 3. By the Law of Sines,

BP

sin(γ)
=

BC

sin(m(]BPC))
.

Yet by BP and CP trisectors of angles ∠ABC, ∠BCA, respectively, we have

that m(]PBC) = β and m(]BCP ) = γ, so m(]BPC) = π − β − γ. Yet since

sin(π − δ) = sin(δ) and α+ β + γ =
π

3
, we have that

BP

sin(γ)
=

BC

sin(π − β − γ)

BP

sin(γ)
=

2 sin(3α)

sin(β + γ)

BP

sin(γ)
=

2 sin(3α)

sin(π/3− α)

BP =
2 sin(3α) sin(γ)

sin(π/3− α)

This is a difficult expression, but it can be simplified by unpacking sin(3α).

We use the triple-angle formula, then factorize and use the expression cos2(α) +

sin2(α) = 1 in reverse.
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sin(3α) = 3 sin(α)− 4 sin3(α)

= 4 sin(α)

[
3

4
− sin2(α)

]
= 4 sin(α)

[
3

4
(cos2(α) + sin2(α))− sin2(α)

]
= 4 sin(α)

[
3

4
cos2(α)− 1

4
sin2(α)

]

= 4 sin(α)

(√3

2
cos(α)

)2

−
(

1

2
sin(α)

)2


We may now use difference-of-squares factorization, and get

4 sin(α)

(√
3

2
cos(α) +

1

2
sin(α)

)(√
3

2
cos(α)− 1

2
sin(α)

)

Yet note that

√
3

2
= sin

(π
3

)
and

1

2
= cos

(π
3

)
. Therefore, the above formula

becomes

4 sin(α)
(

sin
(π

3

)
cos(α) + cos

(π
3

)
sin(α)

)(
sin
(π

3

)
cos(α)− cos

(π
3

)
sin(α)

)
. Using the sum and difference formulas for sine, this becomes

4 sin(α) sin
(π

3
+ α

)
sin
(π

3
− α

)
. Plugging back into our formula for BP , we cancel the sin(π/3− α) term in the

denominator and get

BP = 8 sin(α) sin
(π

3
+ α

)
sin(γ). (1)

By treating ∆BRA in similar fashion to ∆BPC,4, we get that

BR = 8 sin(γ) sin
(π

3
+ γ
)

sin(α). (2)

We now have expressions for the sides BP and BR; similarly, we can find equa-

tions for CP , CQ, AQ, and AR. We are now ready to tackle the next-innermost

layer of subtriangles, namely ∆BPR, ∆CQP , and ∆ARQ. For example, for

∆BPR, consider Figure 4. Sides BP and BR have already been discussed, and

by the Law of Cosines,

(PR)2 = (BP )2 + (BR)2 − 2(BP )(BR) cos(m(]PBR)).

4Note that we choose this ordering of the vertices–we use the “reflective” rather than the

“rotational” correspondence
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Figure 4: ∆BPR

Yet by BP and BR trisectors of ∠ABC, we see that m(]PBR) = β. Therefore,

we get

(PR)2 = 64 sin2(α) sin2(γ)
[
sin2(π/3 + α) + sin2(π/3 + γ)− 2 sin(π/3 + α) sin(π/3 + γ) cos(β)

]
This is the side length of one of the sides of our proposed equilateral triangle,

which should be an expression symmetric in α, β, and γ if we are going to use the

corresponding constructions in ∆CQP and ∆ARQ to find the lengths of QP and

RQ, respectively. To see that we indeed do have symmetry, however hidden, in the

above expression, note that the term in square brackets in Equation 1 involves the

angles (π/3+α), (π/3+γ), and β, and that (π/3+α)+(π/3+γ)+β = π. Therefore,

we can construct an auxillary triangle XY Z such that m(]ZXY ) = (π/3 + α),

m(]XY Z) = β, and m(]Y ZX) = (π/3 + γ). As in the first part of the proof,

we take the circumcircle of XY Z and scale so that the radius of the circumcircle

is 1. Then as before,

Y Z = 2 sin
(π

3
+ α

)
XZ = 2 sin(β)

XY = 2 sin
(π

3
+ γ
)

Therefore, by one more application of the law of cosines, we have

(XZ)2 = (Y Z)2 + (XZ)2 − 2 ∗ (Y Z)(XZ) cos(θ)

4 sin2(β) = 4
[
sin2

(π
3

+ α
)

+ sin2
(π

3
+ γ
)
− 2 sin

(π
3

+ α
)

sin
(π

3
+ γ
)

cos(β)
]

sin2(β) = sin2
(π

3
+ α

)
+ sin2

(π
3

+ γ
)
− 2 sin

(π
3

+ α
)

sin
(π

3
+ γ
)

cos(β)

Thus, the bracketed expression in Equation 1 is equal to sin2(β), so we get

(PR)2 = 64 sin2(α) sin2(β) sin2(γ) and hence

PR = 8 sin(α) sin(β) sin(γ), (3)
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since PR is postitve, and since the sines of the various constants are positive by

α, β, and γ being in [0, π].

Thus, using the corresponding logic for the triple of triangles ∆CQA, ∆CPB,

and ∆CQP , we have that PQ has the same value as PR; similarly, ∆ARB,

∆AQC, and ∆ARQ ensure that QR has the same value as PR. Thus, ∆PQR is

triangular.

2 John Conway’s Proof: only Euclidean Geometry

To motivate John Conway’s proof, we note that from the given information, we

can actually make a guess at to what all the angle measures are. For example, by

the Law of Sines,

PR

sin(β)
=

BR

sin(m(]BPR))

8 sin(α) sin(γ) =
8 sin(γ) sin(α) sin(π/3 + γ)

sin(m(]BPR))

sin(m(]BPR)) = sin(π/3 + γ),

so it is plausible thatm(]BPR) = π
3+γ. Similarly, it is plausible thatm(]BRP ) =

π
3 + α. If these statements actually hold, we can attempt to replace some of the

numerical calculations of the Laws of Sines and Cosines by similarity and congru-

ence arguments based solely on the angle measures and equality of certain sides.

This indeed is what we do; but the interesting part of Conway’s proof is that

we work backwards, starting with an equilateral triangle and building the other

triangles outward. The following proof is adapted from [3] and [6].

First, one piece of notation: if δ is a number (usually an angle measure),

δ∗ := δ + π
3 and δ∗∗ := δ + 2π

3 . Note that an equilateral triangle has angles all
π
3 = 0∗.

Proof. Fix α, β, γ such that α + β + γ = π
3 . Our objective is to show

that for any triangle with angle-measures 3α, 3β, and 3γ, the Morley Triangle is

equilateral; since for any triangle the appropriate values of α, β, γ are discovered

by dividing the corresponding angle-measures by three, this suffices.

Yet by α + β + γ = π
3 , if we distribute two stars on the left-hand-side, we

will increase the sum of the terms to π, and hence the three numbers can be the

angle measures of a triangle. Since we can choose to distribute the two stars to a

single term or to two different terms, we find six triples of numbers that can be

the angles of a triangle. Considering the equilateral triangle, with angles equal to
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0∗, we have seven such triples5

0∗, 0∗, 0∗

α, β∗, γ∗ α∗, β, γ∗ α∗, β∗, γ

α∗∗, β, γ α, β∗∗, γ α, β, γ∗∗

Our objective is to show that any triangle with angle measures 3α, 3β, and

3γ is built out of seven triangles, one from each of the classes given above. To

make sure all the sizes match up, however, we must determine a particular size

of each triangle, reducing the angle-only information to congruence information.

It suffices to determine the length of one side; then by the ASA Congruence

theorem, any triangle with the same angle measures and the same corresponding

side length is congruent to the model triangles we shall determine. As the above

table suggests, we have three types of triangle.

The equilateral triangle Just set it to have side-length 1.

Two single-starred angle measures Set the triangles so that the side oppo-

site the unstarred angle (by the decomposition stated) has side-length one.

One double-starred angle measures We handle the case of angle measures

α∗∗, β, γ, and the rest are handled similarly. We denote this triangle ∆PB′C ′,

because it will eventually take the place of ∆PBC in our proof, so that

m(∠B′PC ′) = α∗∗, m(]PB′C ′) = β, and m(]B′C ′P ) = γ. Fix Y on the

line
←−→
B′C ′ such that m(]B′Y P ) = α∗; in other words, Y is the point on the

line
←−→
B′C ′ passing through P and making an angle of α∗ with the line seg-

ment B′C ′, when viewed from B.6 Similarly, let Z be the point on the line

B′C ′ such that m(]B′Z ′) = α∗. See Figure 5. If α∗ = π/2, then Y = Z, and

of course PY = PZ; for all other angles, P ′Y Z forms an isoceles triangle

with repeated angle α∗ if α∗ < π/2, and (π − α∗) if α∗ > π/2. Therefore,

PY = PZ in this case as well. We scale the triangle so that this length

PY = PZ is always 1.

Now we assemble the seven triangles into a complete triangle. First, take the

equilateral triangle with side-length 1 to be triangle ∆PQR. Then, we attach

the three triangles with two single-starred angle-measures, so that the following

conditions hold.

5Table adapted from [3].
6Y lies inside the segment B′C′, since α∗ > π/3 > γ and α∗ < 2π

3
< π − β, so that the line

Y P must be more orthogonal than BP and CP . This helps visualization, but is not actually

necessary for the proof.
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Figure 5: ∆PB′C ′ with auxillary points Y , Z.
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Figure 6: Central Star of ∆ABC

• Each triangle’s length-1 side is a side of ∆PQR.

• The triangles only overlap at the common edges or vertices (elementary

inequalities with sums of angle-measures ensure that this is possible).

• The triangle with angle-measures α, β∗, γ∗ is placed opposite P and shares

sideQR, and its third angle is labeledA, so thatm(]QAR) = α, m(]AQR) =

γ∗, m(]ARQ) = β∗.

• The triangle with angle-measures α∗, β, γ∗ is placed opposite Q and shares

side PR, and its third angle is labeledB, so thatm(]PBR) = β, m(]BPR) =

γ∗, m(]BRP ) = α∗.

• The triangle with angle-measures α∗, β∗, γ is placed opposite R and shares

side PQ, and its third angle is labeled C, so thatm(]PCQ) = α, m(]CPQ) =

β∗, m(]CQP ) = α∗.

A picture is clearest; see Figure 6.

Now, our objective is to show that the other three triangles “fill in” the picture.

To do so, we first calculate the sum of the angles at P : m(∠RPQ) = π/3 by

∆RPQ equilateral, and by the above, m(]BPR) = γ∗, and m(]CPQ) = β∗. The

total of these angle sums is π+β+γ = 4π
3 −α, so that the remaining angle measure

is 2π −
(
4π
3 − α

)
= 2π

3 + α = α∗∗. Therefore, the remaining opening exactly

accomodates the triangle with angle-measurements α∗∗, β, γ, so we can find B′

on ray
−−→
PB and C ′ on ray

−−→
PC such that m(]PB′C ′) = β and m(]PC ′B′) = γ.

Thus, the “model triangle” PB′C ′ slides into our figure by angle considerations,

with B′ and C ′ on the rays
−−→
PB and

−−→
PC, respectively. We wish to show that the

point B′ actually is B and the point C ′ actually is C, so that the sides match up.
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To do so, we take advantage of the points Y and Z that we constructed; recall

that ∠PB′Y = ∠PB′C ′, so that m(]PB′Y ) = β, and m(]PY B′) = α∗ by the

definition of Y . By ∆PBY a triangle, m(]B′PY ) = π−β−α∗ = π/3+(π/3−β−
α) = π/3 + γ = γ∗. Therefore, ∆B′PY has angle measures α∗, β, γ∗, and hence

is similar to ∆BPR, since they share the same angle-measures. Further, in both

triangles, the side opposite the angle with measure β has length 1; in ∆BPR

this was by direct statement, and in ∆B′PY we defined PY = 1. Therefore,

∆B′PY ∼= ∆BPR, and hence, since congruent sides of congruent figures are

equal, B′P = BP . Yet B′ and B are both on the same ray emanating from P , so

B′ = B.

Similar logic with triangles ∆C ′PZ and ∆CPQ assures us that C ′ = C. Thus,

∆PB′C ′ = ∆PBC, so that the triangle with the correct side-lengths to fill in the

picture also has the desired angle measure. Similarly, ∆CQA is congruent to

our model triangle with angle-measures α, β∗∗, γ, and ∆ARB is congruent to our

model triangle with angle-measures α, β, γ∗∗.

Therefore, we can finally consider the triangle ABC. This triangle does have

angle-measures 3α, 3β, and 3γ; for example, since ∠ABC = ∠ABR + ∠RBP +

∠PBC, m(]ABC) = β + β + β = 3β. Therefore, we also have that BP and BR

are the trisectors of the (interior) angle ∠ABC. Similarly, AQ and AR are the

trisectors of ∠CAB, and CP and CQ are the trisectors of ∠BCA. The proximal

intersections of the trisectors are P,Q, and R, and ∆PQR is equilateral by defi-

nition. Therefore, at least for this triangle, the trisectors’ proximal intersections

form an equilateral triangle.

If we have any other triangle A†B†C† with the same angle-measures as ABC,

let λ be the linear scaling constant: i.e., λ := AB
A†B†

. Note that by taking the

trisectors of this new triangle, with corresponding labeling, each subtriangle is

similar to the corresponding triangle. This is easiest to see for the three outer

triangles ARB, BPC and CQA and their counterparts A†R†B†, etc., since each

has two angles that are trisectors of corresponding angles of the original triangle.

Since AB, BC, and AC scale with the same scaling constant, then, for example,
AR
A†R†

= λ. With that knowledge, we can get that ∆AQR is similar to triangle

∆A†Q†R† with the same proportionality constant λ by the SAS similarity rule,

since m(]QAR) = m(]Q†A†R†) = α, and AR
A†R†

= AQ
A†Q†

= λ. Thus, QR
Q†R†

=
AR
A†R†

= λ. Similar work with the triangles CQP and BPR, and their associated

triangles, shows that PQ
P †Q†

= PR
P †R†

= QR
Q†R†

= λ; since PQ = PR = QR = 1,

P †Q† = P †R† = Q†R† = 1
λ , so the new triangle is equilateral.

Therefore, for any triangle, we have that the (first) Morley triangle is equilat-

eral.
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