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Abstract. Noether’s theorem states that given a physical system, for

every infinitesimal symmetry, there is a corresponding law of symme-

try. While this requires some parsing, it shows that the conservation

of energy and momentum are mathematical consequences of facts that

we take for granted: that the laws of physics do not depend on the

time or location of the observer. We demonstrate the result in classical

mechanics before exploring the theorem in more sophisticated settings.

1. Introduction and Newtonian Mechanics

Most students are presented with Newton’s Three Laws at a young age.

They are as follows:

• An object at rest remains at rest unless acted upon by an outside

force. An object in motion remains in motion unless acted upon by

an outside force.

• The force is equal to the mass of the object times its acceleration.

• For every action there is an equal and opposite reaction.

Now that we are a bit older, we can translate these three laws into math-

ematical laws and try to make sense of them. So let’s start with an object,

and try to figure out what these laws say about its trajectory. We’ll call the

position of this object at time t γ(t) and assume it has mass 1 because we

might as well choose convenient units. The first two laws combined state

that ∂2t γ = F . Notice that in the absence of forces, we have ∂2t γ = 0, which

is exactly the First Law. The Third Law is a bit trickier to formulate, but

it states that if an object exerts a force on another object, the latter object
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exerts an equal and opposite force against the former.1 One way to think of

this is that if we have a closed system of several objects on which no external

forces act, then the total force on the system is zero since each force acting

on each body in the system will cancel.

If we have a body, we can integrate all of the forces that act on it along

the path it follows and call this quantity W, for work.

W =

∫ b

a
F ds

If the body is part of a closed system, then by the third law the work on

an object is completely cancelled out by the work that the object exerts on

the other bodies, so the total work on the system is zero. Since this work

is a group over some “mysterious” torsor, this states that for whatever that

torsor happens to be, it is conserved in a closed system. Even if you don’t

know what a torsor is, you are probably aware that work is a measurement

of change of energy and so this shows that in a closed system, energy is a

conserved quantity.

However, in this derivation, we have made a crucial assumption. We have

assumed that that path integral for work makes sense along the path without

factoring in the fact the particle is moving in time. We have assumed that

a force applied at one point in time is as good as a force applied at any

other point in time. This information is contained in Newton’s second law,

but in order for conservation of energy to hold, we crucially needed this,

even though we completely skipped over it in the derivation. Therefore, in

order for this to hold true, we needed the fact that the laws of physics are

invariant in time.

One could also integrate all the forces over a path in time, and then we

would derive conservation of momentum, with the essential assumption that

a force applied at one point in space is as good as a force applied anywhere

else, that is to say, the laws of physics are invariant of location.

1Technically is states that the integrals of the forces cancel out, but under realistic

conditions this is equivalent.
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Both of these are examples of a much more general phenomena; for every

conserved quantity there is an associated differentiable symmetry. This

holds in great generality..

Exercise 1. Find the associated symmetry associated to conservation of

angular momentum and derive conservation of angular momentum from that

symmetry.

2. An Initial Proof and Lagrangian Mechanics

Unfortunately, in order to prove a simplified version of the theorem, New-

tonian mechanics really aren’t sufficient. Instead, one needs to consider La-

grangian mechanics. Lagrangian mechanics are a reformulation of classical

mechanics that rely on Hamilton’s of stationary action. However, for our

purposes we do not need to understand how one would use them to solve

for the dynamics of a physical system. They just provides the framework to

prove the theorem. The following is a slight generalization of John Baez’s

blog post “Noether’s Theorem in a Nutshell.”

One starts with a function on the system, called the Lagrangian L. For

classical mechanics, L = T − V where T is the kinetic energy and V is

the potential energy, but we can write L = L(x, ẋ, t) in general where ẋ

is the time derivative of the particles in the system. Now, in Lagrangian

mechanics, the momentum is defined to be ∂ẋL and the force is defined to

be ∂xL. By the Euler-Lagrange equations, we know that the time derivative

of momentum is the force, so ∂t(∂ẋL) = ∂xL. A dot over a variable indicates

differentiation with respect to time. Notice that I am being very vague

about what space I am working on. This is not accidental. For the next few

paragraphs, if you would like, you can imagine that you have a particle on

the real line, x is its position, ẋ is its velocities and ignore the superscript

i’s.

Exercise 2. Convince yourself that these definitions make sense and agree

with the the normal definitions of force and momentum when L = T − V as

in classical mechanics on the real line.
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More generally, you can imagine that x = (xi) are coordinates of your

favorite smooth manifold M , that (x, ẋ) = (xi, ẋj) are coordinates on TM

with the summation convention is in effect whenever an index is repeated.

In that case, L : TM ×R→ R is a function and there is an R-action on TM

whose integral curves satisfy the Euler-Lagrange equations.

Theorem 3 (Noether’s Theorem–Simplified). Suppose the Lagrangian has

a time-independent differentiable symmetry, that is a smooth one-parameter

variation x(s) under which it is invariant. Then the quantity C = (∂ẋiL)∂sx
i

is conserved in time.

Proof. Given a smooth variational symmetry of the Lagrangian x(s) where

x(0) = x, we know that

∂sL(x(s), ẋ(s), t) = 0.

Consider ∂tC = ∂t((∂ẋiL)∂sx
i). By the product rule, we have that this is

∂sx
i ∂t(∂ẋiL) + (∂ẋiL) ∂t∂sx

i. By time-independence of the symmetry and

Euler-Lagrange equations, we can rewrite this as ∂sx
i ∂xiL+(∂ẋiL) ∂s(∂tx

i).

However, by the chain rule, this is simply ∂sL(x, ẋ, t) since the symmetry is

time independent. But ∂sL(x(s), ẋ(s), t) = 0 so ∂tC = 0 and C is conserved.

�

Noether’s theorem holds in far greater generality and one does not need

the time invariance of the symmetry. However, this proof has the advantage

of being quite simple and this is already a very general result.

Exercise 4. If the Lagrangian does not depend on time, use a similar argu-

ment to show that H = ∂ẋiLẋi−L is conserved. Remember that just because

the Lagrangian function does not depend on time, the total Lagrangian might

because it depends on x and ẋ. What is the common name for H?

3. Why Do We Care?

Although this is undoubtedly an interesting result, in classical mechanics

there are only three types of symmetries and so this seems like an unneces-

sarily large amount of machinery to build to show the conservation of the
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three classical quantities. The use becomes far more evident in theoretical

physics. One starts with a more general version of the theorem, which al-

lows us to consider fields instead of only particles. In many settings, it is

possible to write down the Lagrangian (or Lagrangian density) of the sys-

tem. 2 One then studies this system by trying to find symmetries of it. In

most cases, one will obtain a Lie group called the “gauge group” of the sys-

tem. By studying the associated Lie algebra of this gauge group, one finds

the conserved quantities in the system. This is a standard tool for modern

physicists and it has been said that Noether’s theorem is second only to

Pythagoras’ theorem in importance for modern physicists. By using this in

general relativity, one unifies the conservation of momentum and energy and

shows why matter seems to be conserved on a day-to-day basis even though

a priori there is no corresponding symmetry. However, the theorem really

shines in particle physics and quantum mechanics.

Exercise 5. What is the gauge group of the classical Lagrangian for a single

free particle in R3? (Hint: Don’t bother writing out the Lagrangian, just

think of symmetries.)

Most physicists believe that the best theory for particle physics is the

standard model, and the recent discovery of the Higgs boson stands as an

enormous success of this theory. The Lagrangian of this particle theory

has internal symmetry SU(3)× SU(2)× U(1) (a type of gauge symmetry),

from which one can discover conserved quantities that are completely non-

obvious. Much of our understanding of sub-atomic physics comes from un-

derstanding symmetries and Noether’s theorem is the bridge between sym-

metries of a mathematical object and conserved quantities we can observe.

4. Phase space

In the classical case, we saw that momentum and position were linked

by Noether’s theorem and the same for energy and time. Every physicist

2There is also a version of the theorem involving Hamiltonians, which has a beautifully

simple proof. However, it requires some background in symplectic geometry so I will not

cover it here. It can be found in John Lee’s Introduction to Smooth Manifolds.
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will immediately have a reflexive response to the previous statement and the

connection is not a coincidence, although it is a case in which correlation is

not causation.

If a translation in one coordinate preserves the Lagrangian (or equiva-

lently the Hamiltonian, if you are familiar with Hamiltonian mechanics),

then the corresponding coordinate momenta, or phase, will be conserved.

Conversely, if a coordinate is conserved, its phase will leave the Lagrangian

invariant.

These pairings occur because each of these coordinates is the phase of the

other. The following few paragraphs explain how this occurs in quantum

mechanics by taking the Fourier transform of the associated operators.

4.1. Quantum Mechanics (optional). The following is derived from David

Griffith’s excellent book Introduction to Quantum Mechanics. Suppose that

instead of a set of discrete particles, one has entired the wild world of quan-

tum mechanics and instead one has a wave function Ψ that evolves in time

by Schrodinger’s equation. When one tries to observe this wave function,

one hits the function with an operator that spits out an expectation value,

or what you expect the observation to be. As per Ehrenfest’s theorem, these

expectation values behave the same way a particle would classically, which

is why classical mechanics works well on large scales. In the case where

your space is the real line, the operator for position is
∫
R xΨΨ̄ dx and the

operator for momentum is
∫
R

~
i (∂xΨ)Ψ̄ dx.

Exercise 6. Convince yourself that the position operator is reasonable and

makes sense. If you have taken quantum mechanics, do the same with the

momentum operator.

If we were to take the Fourier transform of Ψ then one obtains a corre-

sponding wave equation Φ in phase space. That is,

Φ(p) =

∫
R

Ψ(x)e−ipxdx

. The Fourier inversion theorem states that for sufficiently nice Ψ and Φ,

Ψ(x) =
∫
R Φ(p)eipxdp as well.
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Working like physicists, we are going to assume that we have all the

convergence we could ever want and that both Φ and Ψ are as differentiable

as we could ever want. There are plenty of functional analysts here who can

tell you exactly what hypotheses one needs and I highly encourage learning

some functional analysis before applying Fourier transforms all over the

place. Here we are more worried about intuition though, so the rigor is

skipped.

However, if we notice that xeipx/~ = −i~∂peipx/~ and vice-versa, then one

sees that in phase space, the operator for position is −~
i ∂p and the operator

for momentum is p (where these are the quantities that we stick in the

integral between the wave function and its conjugate). Therefore, position

and momentum are Fourier transforms of each other (up to a sign). For this

reason, the phase space is actually called momentum space by physicists;

it wasn’t by accident that the letter p was used in the Fourier transform.

It also turns out that time and energy are theoretically Fourier transforms,

though the details of a time operator is problematic in realistic settings.

Exercise 7. Show that the operators behave as described.
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