PV Numbers and Salem Numbers

Robert Keith Stephens 7/11/2011

- I. Algebraic numbers
 - A. Definition B Examples C How many are there? (countable)
- II. Minimal polynomials
 - A. Definition. Among all the monic polynomials in Q[x] having θ as root, one will divide all the rest
 - 1. Algebraic integers: Minimal polynomial has integer coefficients
 - 2. Examples (rational algebraic integers are actual integers)
 - B. Galois conjugates
- III. PV numbers motivation and definition
 - A. Almost integers (irrational numbers that are surprisingly close to integers)
 - B. Numbers whose powers are almost integers (golden mean)
 - C. PV numbers first studied by Axel Thue and G. H. Hardy, and Hardy's Indian student Vijayaraghavan
 - 1. Irrational real algebraic integers
 - 2. Greater than 1
 - 3. Galois conjugates ALL less than 1 in absolute value
 - 4. Diophantine approx: PV numbers have high powers = almost integers
- IV. Related phenomenon: Salem numbers
 - A. Irrational real algebraic integers
 - B. Greater than 1
 - C. All Galois conjugates less than or equal to 1 in absolute value
 - D. At least one conjugate equal in absolute value to 1
- V. Small PV numbers
 - A. A note on size: every PV number is bigger in absolute value than the constant (integer) coefficient of its minimal polynomial
 - B. What is the smallest limit point of the PV numbers? (Answer: Golden mean)
 - C. PV numbers form a closed set, bounded below: What the smallest PV number?
 - D. Examples of small PV numbers: Quadratic irrationals
- VI. Diophantine characterization of PV numbers
 - A. Square-summability condition characterizes PV numbers among all real numbers
 - B. Limit-goes-to-0 condition characterizes PV numbers among all real algebraic numbers (open question: among all real numbers?)
 - C. A converse also holds
- VII. Facts and conjectures involving Salem numbers
 - A. Fact: Every trace is realized among Salem numbers
 - B. Conjecture: The Salem numbers also form a closed set