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1 Introduction

Plateau’s problem is the problem of finding a minimal surface with a given
boundary contour. It was first formulated by Lagrange (1760) in a rather re-
stricted setting; Plateau showed by experiments that a minimal surface can be
physically obtained in the form of a soap film stretched on a wire framework.
(1849) Since then, it has been called the Plateau problem.

Important questions related to this problem includes, but are not limited to,

e existence of a solution
e uniqueness of the solution
e regularity of the solution

In this talk, T will focus on presenting minimal surface theory, which is at the
heart of the problem, and some results on the existence of a solution to the
problem. Brief accounts of achievements and a list of current open questions
will conclude the talk.

2 Mathematics of Minimal Surfaces

Notation. Let D be an open set (usually an open disk or an open rectangle) in
R2. The mapping x : D — R?, x (u,v) = (xl (u,v), 22 (u,v) , 2% (u, v)) is called
a parametrization and its partial derivatives are denoted by

Xy = (Iiaﬂﬁi»ﬂ?i)a Xy = (I%’xg’xi) '

Example 1. For a surface in R? given by the graph of a two-variable function
z = f(z,y), we define a parametrization by x (u,v) = (u,v, f (u,v)) where u
and v range over the domain of f.

2.1 Definitions

Consider a surface M parametrized by x (u,v).



o A unit normal vector N to the tangent plane to M is given by

N — Xy X Xy

[y X %o

e A normal curvature k (w) in the tangent direction w is given by

1"

k(w)=r -N
where r is a unit speed parametrization of the intersecting curve of M and

the plane spanned by w and N. The derivative is taken along the curve
r (s) with respect to s. By elementary vector calculus, we can write

Kk(w) =1 d—u 2+2md—ud—v+n d—u :
n ds ds ds ds
where | = —x,, - N, 2m = — (x, - N, +x,, - N,) , and n = —x, - N,.

These I,m, and n are called the coefficients of the second fundamental
form.

) E:xZ:xu~xu,F:x%:XU~xv, and G = x, - X, are called the

coefficients of the metric.

e The mean curvature (function) H is defined by

1
H = 5 (Fél + Kg)
where 1 and k9 are the normal curvatures associated to any two perpen-
dicular tangent vectors. Using the coeflicients introduced above, we can

write H as
_ En+Gl—-2Fm

0= Ec—m 2.1)

e A surface M parametrized by x (u,v) is said to be a minimal surface if
H =0 at each point on M.

Exercise 2. Let M be the graph of z = f (z,y) with parametrization x (u,v) =
(u,v, f (u,v)). Using Formula (2.1), show that the condition for a minimal
surface, H = 0, reduces to the partial differential equation

This is known as the minimal surface equation.



2.2 Classical Examples

Classical examples of minimal surfaces are the plane, catenoid, and helicoid.
(1) Plane
(2) Catenoid: This is a surface of revolution generated by a catenary y (x) =
cosh (z) and parametrized by

x (u,v) = (u, cosh (u) cos (v) , cosh (u) sin (v)) .

(3) Helicoid: This is the shape of a spiral staircase whose parametrization is
given by
x (u,v) = (vcos (u),vsin (u) ,u) .

It is a ruled surface, meaning that it is a trace of a line: for any point on the
surface, there exists a line on the surface passing through it.

Exercise 3. Compute the mean curvature H of the catenoid and the helicoid
and verify that they are indeed minimal surfaces.
It is known that:

Theorem 4. (1) If a surface of revolution M is minimal, then M is contained
in either a plane or a catenoid.

(2) If a ruled surface M is minimal, then M is contained in either a plane
or a helicoid.

Some named minimal surfaces are Enneper’s surface, Henneberg’s surface,
Catalan’s surface, and Scherk’s Fifth surface, which will not be covered in this
talk.

3 Plateau’s Problem - Existence of a solution

Through his elaborate experiments, Plateau arrived at the conclusion that a
(simple) closed curve, no matter how bizarre it is, always bounds a disk-like
minimal surface. This is certainly a mathematical statement that a certain
geometric boundary value problem always possesses a solution.

The precise mathematical formulation of Plateau’s problem is as follows:

Problem 5. Given a Jordan curve (i.e. a simple closed curve) I' in R?, deter-
mine a mapping x : D — R3 where D = {(u,v) ER? | u? +02 < 1} is the open
unit disk and x (u,v) = (2! (u,v), 2% (u,v) , 23 (u,v))such that

(i) x € C?(D)NC° (D);

(i) AX =Xyy +Xpp =0, E=x2=x2=G,and F =x, %, =0 on D;

(iii) x maps 0D homeomorphically onto T

The existence of a solution to this formulation was shown in 1930’s by J.
Douglas and T. Rado.

Theorem 6. [Douglas, Rado] There exists a disk-like minimal surface spanning
any given Jordan curve.



For proofs, please look at references . We will only try to understand the
formulation of this existence problem.

Any surface M parametrized by x satisfying (i), (ii), and (iii) is called a
solution to Plateau’s problem. Suppose M is one such surface. The condition
that x is defined on D means that M is disk-like; Condition (i) allows us to deal
with the derivatives in (ii); Condition (iii) simply means that M is bounded
by the given curve I'. So it remains to understand the connection between
Condition (ii) and M being a minimal surface.

Definition 7. A parametrization x (u,v) is called isothermal if E = G and
F=0.

Theorem 8. [Osserman] If the parametrization x (u,v) is isothermal, then
AX = Xyy + Xy = (2EH) N.

Exercise 9. Prove Theorem &.
Hint. Use Formula (2.1) and the following formulas:

E, E,
Xuu = ﬁxu - ﬁxv +1U
— _& +% + nU.
Xypy = g Xu T 5% +nU.

Corollary 10. A surface M with an isothermal parametrization x (u,v) =
(:Ul (u,v), 22 (u,v), 23 (u,v)) is minimal if and only if ', x>, and = are har-
monic functions.

Proof. Suppose M is a minimal surface. Then H = 0 and so, by Theorem
8, Ax = 0, which means that Az’ = 0 for i = 1,2,3. Conversely, if z* are
harmonic, then Ax = 0. By Theorem 8, (2EH)N = 0. But |N| = 1 and
E =x2 # 0. So it must be the case that H = 0, meaning that M is minimal. [

So Condition (ii) is precisely the condition that M is a minimal surface.

4 Achievements and Open Problems

In early 1960’s, several extensions of the problem to higher dimensions (i.e. for k-
dimensional surfaces in n-dimensional space for k£ > 3 and n > k) were proposed
based on new definitions of the concept of a surface, a boundary, and area.
They turn out to be much more difficult to study. Moreover, while the solutions
to the original problem are always regular, it turns out that the solutions to
the extended problem may have singularities if ¥ < n — 2. For structures of
codimension 1, i.e. for k-dimenional surfaces in n = k + 1-dimensional space,
singularities occur only for n > 7. To solve the extended problem, the theory of
perimeters (De Giorgi) for codimension 1 and the theory of rectifiable currents
(Federer and Fleming) for higher codimension have been developed.

As regards to uniqueness, only certain sufficient criteria are known, one of
which is that the solution is unique if the given contour I" has a single-valued
convex projection under central or parallel projection onto a certain plane.



Current open problems abounds, some of which are

Surfaces of least area which are forced to lie on one side of a fixed obstacle.

Free boundary value problems where the boundary of a solution surface
is requried to lie on a given manifold.

The close relations to the calculus of variations and to the theory of partial
differential equations.

The behavior of interfaces under varying gravity conditions.

The (non)existence problems for surfaces of prescribed (but variable and
not vanishing) mean curvature.
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