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1 Introduction

Plateau's problem is the problem of �nding a minimal surface with a given
boundary contour. It was �rst formulated by Lagrange (1760) in a rather re-
stricted setting; Plateau showed by experiments that a minimal surface can be
physically obtained in the form of a soap �lm stretched on a wire framework.
(1849) Since then, it has been called the Plateau problem.

Important questions related to this problem includes, but are not limited to,

• existence of a solution

• uniqueness of the solution

• regularity of the solution

In this talk, I will focus on presenting minimal surface theory, which is at the
heart of the problem, and some results on the existence of a solution to the
problem. Brief accounts of achievements and a list of current open questions
will conclude the talk.

2 Mathematics of Minimal Surfaces

Notation. Let D be an open set (usually an open disk or an open rectangle) in
R2. The mapping x : D → R3, x (u, v) =

(
x1 (u, v) , x2 (u, v) , x3 (u, v)

)
is called

a parametrization and its partial derivatives are denoted by

xu :=
(
x1u, x

2
u, x

3
u

)
, xv :=

(
x1v, x

2
v, x

3
v

)
.

Example 1. For a surface in R3 given by the graph of a two-variable function
z = f (x, y), we de�ne a parametrization by x (u, v) = (u, v, f (u, v)) where u
and v range over the domain of f .

2.1 De�nitions

Consider a surface M parametrized by x (u, v).
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• A unit normal vector N to the tangent plane to M is given by

N =
xu × xv

|xu × xv|
.

• A normal curvature κ (w) in the tangent direction w is given by

κ (w) = r
′′
·N

where r is a unit speed parametrization of the intersecting curve ofM and
the plane spanned by w and N. The derivative is taken along the curve
r (s) with respect to s. By elementary vector calculus, we can write

κ (w) = l

(
du

ds

)2

+ 2m
du

ds

dv

ds
+ n

(
dv

ds

)2

where l = −xu ·Nu, 2m = − (xv ·Nu + xu ·Nv) , and n = −xv ·Nv.

These l,m, and n are called the coe�cients of the second fundamental
form.

• E = x2
u = xu · xu, F = x2

v = xu · xv, and G = xv · xv are called the
coe�cients of the metric.

• The mean curvature (function) H is de�ned by

H =
1

2
(κ1 + κ2)

where κ1 and κ2 are the normal curvatures associated to any two perpen-
dicular tangent vectors. Using the coe�cients introduced above, we can
write H as

H =
En+Gl − 2Fm

2 (EG− F 2)
. (2.1)

• A surface M parametrized by x (u, v) is said to be a minimal surface if
H = 0 at each point on M .

Exercise 2. LetM be the graph of z = f (x, y) with parametrization x (u, v) =
(u, v, f (u, v)). Using Formula (2.1), show that the condition for a minimal
surface, H = 0, reduces to the partial di�erential equation

fuu
(
1 + f2v

)
+ fvv

(
1 + f2u

)
− 2fufvfuv = 0.

This is known as the minimal surface equation.
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2.2 Classical Examples

Classical examples of minimal surfaces are the plane, catenoid, and helicoid.
(1) Plane
(2) Catenoid: This is a surface of revolution generated by a catenary y (x) =

cosh (x) and parametrized by

x (u, v) = (u, cosh (u) cos (v) , cosh (u) sin (v)) .

(3) Helicoid: This is the shape of a spiral staircase whose parametrization is
given by

x (u, v) = (v cos (u) , v sin (u) , u) .

It is a ruled surface, meaning that it is a trace of a line: for any point on the
surface, there exists a line on the surface passing through it.

Exercise 3. Compute the mean curvature H of the catenoid and the helicoid
and verify that they are indeed minimal surfaces.

It is known that:

Theorem 4. (1) If a surface of revolution M is minimal, then M is contained
in either a plane or a catenoid.

(2) If a ruled surface M is minimal, then M is contained in either a plane
or a helicoid.

Some named minimal surfaces are Enneper's surface, Henneberg's surface,
Catalan's surface, and Scherk's Fifth surface, which will not be covered in this
talk.

3 Plateau's Problem - Existence of a solution

Through his elaborate experiments, Plateau arrived at the conclusion that a
(simple) closed curve, no matter how bizarre it is, always bounds a disk-like
minimal surface. This is certainly a mathematical statement that a certain
geometric boundary value problem always possesses a solution.

The precise mathematical formulation of Plateau's problem is as follows:

Problem 5. Given a Jordan curve (i.e. a simple closed curve) Γ in R3, deter-
mine a mapping x : D̄ → R3 where D =

{
(u, v) ∈ R2 | u2 + v2 < 1

}
is the open

unit disk and x (u, v) =
(
x1 (u, v) , x2 (u, v) , x3 (u, v)

)
such that

(i) x ∈ C2 (D) ∩ C0
(
D̄
)
;

(ii) ∆x = xuu + xvv = 0, E = x2
u = x2

v = G, and F = xu · xv = 0 on D;
(iii) x maps ∂D homeomorphically onto Γ.

The existence of a solution to this formulation was shown in 1930's by J.
Douglas and T. Rado.

Theorem 6. [Douglas, Rado] There exists a disk-like minimal surface spanning
any given Jordan curve.
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For proofs, please look at references . We will only try to understand the
formulation of this existence problem.

Any surface M parametrized by x satisfying (i), (ii), and (iii) is called a
solution to Plateau's problem. Suppose M is one such surface. The condition
that x is de�ned on D̄ means thatM is disk-like; Condition (i) allows us to deal
with the derivatives in (ii); Condition (iii) simply means that M is bounded
by the given curve Γ. So it remains to understand the connection between
Condition (ii) and M being a minimal surface.

De�nition 7. A parametrization x (u, v) is called isothermal if E = G and
F = 0.

Theorem 8. [Osserman] If the parametrization x (u, v) is isothermal, then
∆x := xuu + xvv = (2EH)N.

Exercise 9. Prove Theorem 8.
Hint. Use Formula (2.1) and the following formulas:

xuu =
Eu

2E
xu −

Ev

2G
xv + lU

xvv = −Gu

2E
xu +

Gv

2G
xv + nU.

Corollary 10. A surface M with an isothermal parametrization x (u, v) =(
x1 (u, v) , x2 (u, v) , x3 (u, v)

)
is minimal if and only if x1, x2, and x3 are har-

monic functions.

Proof. Suppose M is a minimal surface. Then H = 0 and so, by Theorem
8, ∆x = 0, which means that ∆xi = 0 for i = 1, 2, 3. Conversely, if xi are
harmonic, then ∆x = 0. By Theorem 8, (2EH)N = 0. But |N| = 1 and
E = x2

u 6= 0. So it must be the case thatH = 0, meaning thatM is minimal.

So Condition (ii) is precisely the condition that M is a minimal surface.

4 Achievements and Open Problems

In early 1960's, several extensions of the problem to higher dimensions (i.e. for k-
dimensional surfaces in n-dimensional space for k ≥ 3 and n ≥ k) were proposed
based on new de�nitions of the concept of a surface, a boundary, and area.
They turn out to be much more di�cult to study. Moreover, while the solutions
to the original problem are always regular, it turns out that the solutions to
the extended problem may have singularities if k ≤ n − 2. For structures of
codimension 1, i.e. for k-dimenional surfaces in n = k + 1-dimensional space,
singularities occur only for n > 7. To solve the extended problem, the theory of
perimeters (De Giorgi) for codimension 1 and the theory of recti�able currents
(Federer and Fleming) for higher codimension have been developed.

As regards to uniqueness, only certain su�cient criteria are known, one of
which is that the solution is unique if the given contour Γ has a single-valued
convex projection under central or parallel projection onto a certain plane.
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Current open problems abounds, some of which are

• Surfaces of least area which are forced to lie on one side of a �xed obstacle.

• Free boundary value problems where the boundary of a solution surface
is requried to lie on a given manifold.

• The close relations to the calculus of variations and to the theory of partial
di�erential equations.

• The behavior of interfaces under varying gravity conditions.

• The (non)existence problems for surfaces of prescribed (but variable and
not vanishing) mean curvature.
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