What is a Quasicrystal?

July 23, 2013
An object with rotational symmetry is an object that looks the same after a certain amount of rotation.
An object with **rotational symmetry** is an object that looks the same after a certain amount of rotation.

Figure: rotational symmetry

- **Two-fold**
- **Three-fold**
- **Five-fold**
- **Six-fold**

Figure: rotational symmetry
Crystallography: X-ray diffraction experiment.

The first x-ray diffraction experiment was performed by von Laue in 1912.
Crystallography: X-ray diffraction experiment.

The first x-ray diffraction experiment was performed by von Laue in 1912.

- Crystals are ordered
 ⇒ a diffraction pattern with sharp bright spots, Bragg peaks.
A paradigm before 1982

Crystallographic restriction:
If atoms are arranged in a pattern periodic, then

∃ only 2,3,4 and 6-fold rotational symmetries

for diffraction pattern of periodic crystals.

What is a Quasicrystal?
Crystallographic restriction:
If atoms are arranged in a pattern periodic, then

\[\exists \text{ only } 2, 3, 4 \text{ and } 6\text{-fold rotational symmetries} \]

for diffraction pattern of periodic crystals.

All the crystals were found to be periodic from 1912 till 1982.
A paradigm before 1982

- Crystallographic restriction:
 If atoms are arranged in a pattern periodic, then
 \[\exists \text{ only } 2, 3, 4 \text{ and } 6\text{-fold rotational symmetries} \]
 for diffraction pattern of periodic crystals.
- All the crystals were found to be periodic from 1912 till 1982.
- Atoms in a solid are arranged in a periodic pattern.
Discovery of quasicrystals in 1982

- Dan Shechtman (2011 Nobel Prize winner in Chemistry)

Figure: Al_6Mn
Definition for Crystal

- Till 1991: a solid composed of atoms arranged in a pattern periodic in three dimensions.
(Quasi)crystals

Definition for Crystal

- Till 1991: a solid composed of atoms arranged in a pattern periodic in three dimensions.

Q. What are the appropriate mathematical models?
A Delone set Λ in \mathbb{R}^d is a set with the properties:

- uniform discreteness: $\exists r > 0$ such that for any $y \in \mathbb{R}^d$

 $$B_r(y) \cap \Lambda \text{ contains at most one element.}$$

- relative denseness: $\exists R > 0$ such that for any $y \in \mathbb{R}^d$

 $$B_R(y) \cap \Lambda \text{ contains at least one element.}$$
Mathematical diffraction theory

Dirac Comb

\[\delta \Lambda := \sum_{x \in \Lambda} \delta_x \]

for \(\Lambda \subset \mathbb{R}^d \).

Autocorrelation restricted to \([-L, L]^d\):

\[\sum_{x, y \in \Lambda \cap [-L, L]^d} \delta_{x - y} \]

Autocorrelation measure \(\gamma \):

\[\gamma = \lim_{L \to \infty} \frac{1}{\text{vol}[-L, L]^d} \sum_{x, y \in \Lambda \cap [-L, L]^d} \delta_{x - y} \]

A diffraction measure \(\hat{\gamma} \) describes the mathematical diffraction.

\(\hat{\gamma} \) is a positive measure:

\[\hat{\gamma} = \hat{\gamma}_d + \hat{\gamma}_c. \]

A quasicrystal: a Delone set \(\Lambda \) with \(\hat{\gamma}_d \neq 0 \).

What is a Quasicrystal?
Dirac Comb $\delta_{\Lambda} := \sum_{x \in \Lambda} \delta_x$ for $\Lambda \subset \mathbb{R}^d$.

What is a Quasicrystal?
Dirac Comb \(\delta_\Lambda := \sum_{x \in \Lambda} \delta_x \) for \(\Lambda \subset \mathbb{R}^d \).

- Autocorrelation restricted to \([-L, L]^d\):
 \[
 \sum_{x, y \in \Lambda \cap [-L, L]^d} \delta_{x - y}.
 \]
Mathematical diffraction theory

Dirac Comb $\delta_{\Lambda} := \sum_{x \in \Lambda} \delta_x$ for $\Lambda \subset \mathbb{R}^d$.

1. autocorrelation restricted to $[-L, L]^d$: $\sum_{x,y \in \Lambda \cap [-L,L]^d} \delta_{x-y}$.

2. autocorrelation measure

$$\gamma = \lim_{L \to \infty} \frac{1}{\text{vol}[-L, L]^d} \sum_{x,y \in \Lambda \cap [-L,L]^d} \delta_{x-y}.$$
Dirac Comb \(\delta_\Lambda := \sum_{x \in \Lambda} \delta_x \) for \(\Lambda \subset \mathbb{R}^d \).

- autocorrelation restricted to \([-L, L]^d\):
 \[
 \sum_{x, y \in \Lambda \cap [-L, L]^d} \delta_{x-y}.
 \]

- autocorrelation measure

 \[
 \gamma = \lim_{L \to \infty} \frac{1}{\text{vol}[-L, L]^d} \sum_{x, y \in \Lambda \cap [-L, L]^d} \delta_{x-y}.
 \]

- a **diffraction measure** \(\hat{\gamma} \) describes the mathematical diffraction.

- \(\hat{\gamma} \) is a positive measure: \(\hat{\gamma} = \hat{\gamma}_d + \hat{\gamma}_c \).
Dirac Comb $\delta_\Lambda := \sum_{x \in \Lambda} \delta_x$ for $\Lambda \subset \mathbb{R}^d$.

- autocorrelation restricted to $[-L, L]^d$: $\sum_{x, y \in \Lambda \cap [-L, L]^d} \delta_{x-y}$.
- autocorrelation measure

$$\gamma = \lim_{L \to \infty} \frac{1}{\text{vol}[-L, L]^d} \sum_{x, y \in \Lambda \cap [-L, L]^d} \delta_{x-y}.$$

- a diffraction measure $\hat{\gamma}$ describes the mathematical diffraction.
- $\hat{\gamma}$ is a positive measure: $\hat{\gamma} = \hat{\gamma}_d + \hat{\gamma}_c$.
- a quasicrystal: a Delone set Λ with $\hat{\gamma}_d \neq 0$.

What is a Quasicrystal?
Example: a lattice

- $L \subset \mathbb{R}^d$ a lattice, i.e., $L = A(\mathbb{Z}^d)$,
 - A is $d \times d$ invertible matrix.
 - $L^* = \{y : e^{ix \cdot y} = 1, \ \forall x \in L\}$

What is a Quasicrystal?
Example: a lattice

- $L \subset \mathbb{R}^d$ a lattice, i.e., $L = A(\mathbb{Z}^d)$,
 - A is $d \times d$ invertible matrix.
 - $L^* = \{y : e^{ix \cdot y} = 1, \forall x \in L\}$
- $L - L = L$ implies
 \[\gamma = \delta_L = \sum_{x \in L} \delta_x \]

What is a Quasicrystal?
Example: a lattice

- $L \subset \mathbb{R}^d$ a lattice, i.e., $L = A(\mathbb{Z}^d)$,
 - A is $d \times d$ invertible matrix.
 - $L^* = \{ y : e^{i x \cdot y} = 1, \ \forall x \in L \}$
- $L - L = L$ implies
 $$\gamma = \delta_L = \sum_{x \in L} \delta_x$$
- Poisson summation formula says that
 $$\hat{\gamma} = \frac{1}{|\det A|} \sum_{x \in L^*} \delta_x$$

What is a Quasicrystal?
Meyer sets

Let Λ be a Delone set.
Meyer sets

Let Λ be a Delone set.

1. $\Lambda - \Lambda$ is uniformly discrete.
Let Λ be a Delone set.

1. $\Lambda - \Lambda$ is uniformly discrete.
2. Λ is an almost lattice:

$$\exists \text{ a finite set } F : \Lambda - \Lambda \subset \Lambda + F.$$
Let Λ be a Delone set.

1. $\Lambda - \Lambda$ is uniformly discrete.
2. Λ is an almost lattice:
 \[\exists \text{ a finite set } F : \Lambda - \Lambda \subset \Lambda + F. \]
3. Λ is harmonious:
 \[\forall \epsilon > 0, \Lambda^*_\epsilon = \{ y \in \mathbb{R}^d : |e^{ix\cdot y} - 1| \leq \epsilon \} \text{ is relatively dense.} \]
Let Λ be a Delone set.

1. $\Lambda - \Lambda$ is uniformly discrete.
2. Λ is an almost lattice:
 \[
 \exists \text{ a finite set } F : \Lambda - \Lambda \subset \Lambda + F.
 \]
3. Λ is harmonious:
 \[
 \forall \epsilon > 0, \Lambda^*_\epsilon = \{y \in \mathbb{R}^d : |e^{ix \cdot y} - 1| \leq \epsilon\} \text{ is relatively dense.}
 \]

Theorem If Λ is a Delone set, then the above three conditions are equivalent.

What is a Quasicrystal?
Cut and Project method

What is a Quasicrystal?
Cut and Project method

What is a Quasicrystal?
Model Sets

A model set (or cut and project set) is the translation of

$$\Lambda = \Lambda(W) = \{\pi_1(x) : x \in L, \pi_2(x) \in W\}.$$

- \mathbb{R}^d: a real euclidean space
- G: a locally compact abelian group
- Projection maps
 $$\pi_1 : \mathbb{R}^d \times G \to \mathbb{R}^d, \pi_2 : \mathbb{R}^d \times G \to G$$
- L: a lattice in $\mathbb{R}^d \times G$ with
 - $\pi_1|_L$ is injective and $\pi_2(L)$ is dense.
- $W \subset G$ is non-empty and $W = \overline{W^0}$ is compact.
Some results

A model set is a Meyer set. Schlottman, 1998

A model set Λ has a purely discrete diffraction spectrum. ($\hat{\gamma} = \hat{\gamma}_d$).

A Meyer is a subset of some model sets. Strungaru, 2005

A Meyer set has a discrete diffraction spectrum. ($\hat{\gamma}_d \neq 0$).

What is a Quasicrystal?
A model set is a Meyer set.
A model set is a Meyer set.

Schlottman, 1998

A model set Λ has a purely discrete diffraction spectrum. ($\hat{\gamma} = \hat{\gamma}_d$).
Some results

- A model set is a Meyer set.
- Schlottman, 1998
 A model set Λ has a purely discrete diffraction spectrum.
 ($\hat{\gamma} = \hat{\gamma}_d$).
- Meyer, 1972
 A Meyer is a subset of some model sets.

What is a Quasicrystal?
Some results

- A model set is a Meyer set.
 - Schlottman, 1998
 A model set Λ has a purely discrete diffraction spectrum. ($\hat{\gamma} = \hat{\gamma}_d$).
 - Meyer, 1972
 A Meyer is a subset of some model sets.

- Strungaru, 2005
 A Meyer set has a discrete diffraction spectrum. ($\hat{\gamma}_d \neq 0$).
Definition

- A **Pisot** number is a real algebraic integer $\theta > 1$ whose conjugates all lie inside the unit circle.

- A **Salem** number is a real algebraic integer $\theta > 1$ whose conjugates all lie inside or on the unit circle, at least one being on the circle.
Pisot and Salem numbers

Definition

- A Pisot number is a real algebraic integer $\theta > 1$ whose conjugates all lie inside the unit circle.
- A Salem number is a real algebraic integer $\theta > 1$ whose conjugates all lie inside or on the unit circle, at least one being on the circle.

Remark

- The set S of all Pisot numbers is infinite and has a remarkable structure: the sequence of derived sets S, S', S'', \ldots does not terminate.

What is a Quasicrystal?
Quasicrystals corresponding to Pisot or Salem numbers

Example

- $\theta = \frac{1+\sqrt{5}}{2}$ and $\theta' = \frac{1-\sqrt{5}}{2}$.
- $L = \{(a + b\theta, a + b\theta') : a, b \in \mathbb{Z}\}$ is a Lattice in \mathbb{R}^2.
- $\Lambda = \{a + b\theta : |a + b\theta'| < 1\}$ is a model set with
 \[
 \theta\Lambda \subset \Lambda.
 \]
Quasicrystals corresponding to Pisot or Salem numbers

Example

- \(\theta = \frac{1+\sqrt{5}}{2} \) and \(\theta' = \frac{1-\sqrt{5}}{2} \).
- \(L = \{(a + b\theta, a + b\theta') : a, b \in \mathbb{Z}\} \) is a Lattice in \(\mathbb{R}^2 \).
- \(\Lambda = \{a + b\theta : |a + b\theta'| < 1\} \) is a model set with \(\theta\Lambda \subset \Lambda \).

Theorem

- Given a Pisot or Salem number \(\theta \), there exists a model set \(\Lambda \) such that \(\theta\Lambda \subset \Lambda \).
- Given a model set \(\Lambda \), if \(\theta \) is a positive real number with \(\theta\Lambda \subset \Lambda \), then \(\theta \) is a Pisot or Salem number.
Riemann Hypothesis

- Riemann zeta function:

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}. \]

- Riemann hypothesis: the non-trivial zeros should lie on the critical line \(\frac{1}{2} + it \).

- \(\mathbb{Z} \): the set of imaginary parts of the complex zeros. \(\mathbb{Z} \) is not uniformly discrete.

- Truth of hypothesis implies that the Fourier transform of \(\mathbb{Z} \) is

\[\sum_{n=1}^{\infty} \frac{1}{n^s}. \]

- Where \(p \) is a prime and \(m \) is a positive integer.

What is a Quasicrystal?
Riemann Hypothesis

- Riemann zeta function:
 \[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}. \]

- Riemann hypothesis: the non-trivial zeros should lie on the critical line \(1/2 + it \).

What is a Quasicrystal?
Riemann zeta function:

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}. \]

Riemann hypothesis: the non-trivial zeros should lie on the critical line \(1/2 + it\).

\(Z\): the set of imaginary parts of the complex zeros.

- \(Z\) is not uniformly discrete.

What is a Quasicrystal?
Riemann Hypothesis

- Riemann zeta function:
 \[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}. \]

- Riemann hypothesis: the non-trivial zeros should lie on the critical line \(1/2 + it\).
- \(Z\): the set of imaginary parts of the complex zeros.
 - \(Z\) is not uniformly discrete.
 - Truth of hypothesis implies that the Fourier transform of \(Z\) is
 \[\sum c_{m,p} \delta_{\pm \log p^m}, \]
 where \(p\) is a prime and \(m\) is a positive integer.

What is a Quasicrystal?
An aperiodic set Λ is a generalized quasicrystal if

- it is locally finite, and has a points in every sphere of some radius R.
- it has a discrete Fourier transform.
A generalized quasicrystal

An aperiodic set Λ is a generalized quasicrystal if

- it is locally finite, and has a points in every sphere of some radius R.
- it has a discrete Fourier transform.

Exercise for students. Classify all one-dimensional generalized quasicrystals. After you have done this, look at the list and see whether Z is there. If Z is there, you have proved RH.
Y. Meyer (1995)
Quasicrystals, Diophantine approximations, and algebraic numbers

M. Senechal (1995)
Quasicrystals and Geometry

R. Moody (1997)
Meyer sets and their duals.

F. Dyson (MSRI Lecture Notes 2002)
Random Matrices, Neutron Capture Levels, Quasicrystals and Zeta-function zeros