2015 Rasor-Bareis examination problems

1. Prove that $\cos \left(\pi / 2^{n}\right)$ is irrational for all integer $n \geq 2$.
2. Let m and n be positive integers such that $m / n<\sqrt{2}$. Prove that, in fact, $m / n<$ $\sqrt{2}\left(1-\frac{1}{4 n^{2}}\right)$.
3. An equiangular 2015-gon P is inscribed in a circle. Prove that P is regular. (A polygon is said to be equiangular if all its angles are equal. It is regular if, additionally, the lengths of all its sides are equal.)
4. Let $n \in \mathbb{N}$ and let $a_{1}, a_{2}, \ldots, a_{n} ; b_{1}, b_{2}, \ldots, b_{n}$ be all the integers from 1 to $2 n$ ordered so that $a_{1}<\cdots<a_{n}$ and $b_{1}>\cdots>b_{n}$. Prove that $\sum_{i=1}^{n}\left|a_{i}-b_{i}\right|=n^{2}$.
5. The points on the sides of an equilateral triangle are colored with two colors. Prove that there are three points P, Q, R of the same color such that $\triangle P Q R$ is a right triangle.
6. Evaluate $\int_{-1}^{1} \frac{d x}{1+x^{3}+\sqrt{1+x^{6}}}$.
