2015 Rasor-Bareis exam solutions

1. Prove that $a_{n}=\cos \left(\pi / 2^{n}\right)$ is irrational for all integer $n \geq 2$.

Solution. We use induction on n. For $n=2, a_{2}=\cos (\pi / 4)=1 / \sqrt{2}$ is irrational. The formula $a_{n}=$ $2 a_{n+1}^{2}-1=$ shows that if a_{n+1} is rational, then a_{n} is also rational; hence if, by induction, a_{n} is irrational, then a_{n+1} is also irrational.
2. Let m and n be positive integers such that $m / n<\sqrt{2}$. Prove that $m / n<\sqrt{2}\left(1-\frac{1}{4 n^{2}}\right)$.

Solution. We write a sequence of equivalent inequalities:

$$
\frac{m}{n}<\sqrt{2}\left(1-\frac{1}{4 n^{2}}\right) \quad \text { iff } \quad 1-\frac{m}{\sqrt{2} n}>\frac{1}{4 n^{2}} \quad \text { iff } \quad \frac{\sqrt{2} n-m}{\sqrt{2} n}>\frac{1}{4 n^{2}} \quad \text { iff } \quad \frac{2 n^{2}-m^{2}}{(\sqrt{2} n+m) \sqrt{2} n}>\frac{1}{4 n^{2}}
$$

But since $m<\sqrt{2} n$, so $m^{2}<2 n^{2}$, and therefore $2 n^{2}-m^{2} \geq 1$, we see that

$$
\frac{2 n^{2}-m^{2}}{(\sqrt{2} n+m) \sqrt{2} n}>\frac{1}{(\sqrt{2} n+\sqrt{2} n) \sqrt{2} n}=\frac{1}{4 n^{2}}
$$

Another solution. Assume that $m / n \geq \sqrt{2}\left(1-\frac{1}{4 n^{2}}\right)$. Then

$$
\begin{gathered}
\sqrt{2}\left(1-\frac{1}{4 n^{2}}\right) \leq \frac{m}{n}<\sqrt{2}, \quad \text { so } 2\left(1-\frac{1}{4 n^{2}}\right)^{2} \leq \frac{m^{2}}{n^{2}}<2, \quad \text { so } \quad 2-\frac{1}{n^{2}}+\frac{1}{8 n^{4}} \leq \frac{m^{2}}{n^{2}}<2 \\
\text { so } 2 n^{2}-1+\frac{1}{8 n^{2}} \leq m^{2}<2 n^{2}, \quad \text { so } 2 n^{2}-1<m^{2}<2 n^{2}
\end{gathered}
$$

which is impossible since n^{2} and m^{2} are both integers.
3. An equiangular 2015-gon P is inscribed in a circle. Prove that P is regular.

Solution. We only need to prove that the sides of P have the same length. Let the vertices of P be $A_{1}, A_{2}, \ldots, A_{2015}$, and for each i, let $\left|A_{i} A_{i+1}\right|=a_{i}$. (We take i modulo 2015, that is, assume that $A_{2016}=A_{1}, A_{2017}=A_{2}$, etc., so that $a_{2016}=a_{1}$.) Then, for any i, we are given that $\angle A_{i} A_{i+1} A_{i+2}$ $=\angle A_{i+3} A_{i+2} A_{i+1}$, and $\angle A_{i+1} A_{i} A_{i+2}=\angle A_{i+2} A_{i+3} A_{i+1}$ since these are angles subtended by the same chord, so the triangles $\triangle A_{i} A_{i+1} A_{i+2}$ and $\triangle A_{i+3} A_{i+2} A_{i+1}$
 are congruent, so $a_{i}=a_{i+2}$. Hence, $a_{1}=a_{3}=\cdots=a_{2015}=a_{2}=a_{4}=\cdots=$ a_{2014}.
Another solution. Let the vertices of P be $A_{1}, A_{2}, \ldots, A_{2015}$, and let the angles of the polygon be all equal to β. For each i, the triangle $O A_{i} A_{i+1}$ is isosceles, thus $\angle O A_{i+1} A_{i}=\angle O A_{i+1} A_{i}$; let us denote this angle by α_{i}. Then, for any $i, \alpha_{i}+\alpha_{i+1}=\alpha_{i+1}+\alpha_{i+2}=\beta$, so $\alpha_{i}=\beta-\alpha_{i+1}=\alpha_{i+2}$, and, hence, $\alpha_{1}=\alpha_{3}=\ldots=\alpha_{2015}=\alpha_{2}=\ldots=\alpha_{2014}$. It follows that all the triangles $\triangle O A_{i} A_{i+1}$ are congruent, and so all the sides $A_{i} A_{i+1}$ of the polygon have equal
 length.
4. Let $n \in \mathbb{N}$ and let $a_{1}, a_{2}, \ldots, a_{n} ; b_{1}, b_{2}, \ldots, b_{n}$ be all the integers between 1 and $2 n$ ordered so that $a_{1}<\cdots<a_{n}$ and $b_{1}>\cdots>b_{n}$. Prove that $\sum_{i=1}^{n}\left|a_{i}-b_{i}\right|=n^{2}$.
Solution. Let us place the numbers a_{i}, b_{j} in their natural order, say, $b_{n}, a_{1}, a_{2}, b_{n-1}, \ldots, a_{n}, b_{1}$, meaning that $b_{n}=1, a_{1}=2, a_{2}=3, b_{n-1}=4, \ldots, b_{1}=2 n$. The "standard" ordering, where $a_{i}=i$ and $b_{i}=2 n-i+1$, $i=1, \ldots, n$, then takes the form $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, b_{n}, \ldots, b_{3}, b_{2}, b_{1}$. For this ordering we have

$$
\sum_{i=1}^{n}\left|a_{i}-b_{i}\right|=(2 n-1)+(2 n-3)+\cdots+1=n^{2}
$$

Any other ordering can be obtained from the standard one by "pushing" some of a_{k} to the right, that is, by applying a sequence of transpositions of the form

$$
\tau_{k, l}: \ldots, a_{k}, b_{l}, \ldots \mapsto \ldots, b_{l}, a_{k}, \ldots
$$

(That is, if $a_{k}=m$ and $b_{l}=m+1$ for some m, then after the application of $\tau_{k, l}$ we have $b_{l}=m$, $a_{k}=m+1$, and all other a_{i} and b_{j} keep their values.) If we show that any such transposition preserves the sum $\sum_{i=1}^{n}\left|a_{i}-b_{i}\right|$, we are done. And indeed, under the transposition $\tau_{k, l}$, for any $i \neq k, l$, the difference $a_{i}-b_{i}$ remains intact. If $k<l$, then $b_{l}, a_{k}<a_{l}, b_{k}$, and the transposition $\tau_{k, l}$ decrements $\left|a_{k}-b_{k}\right|$ by 1 and increments $\left|a_{l}-b_{l}\right|$ by 1 . If $l<k$, then $a_{l}, b_{k}<a_{k}, b_{l}$, and the transposition $\tau_{k, l}$ increments $\left|a_{k}-b_{k}\right|$ by 1 and decrements $\left|a_{l}-b_{l}\right|$ by 1 . Finally, if $l=k$, the difference $\left|a_{k}-b_{k}\right|$ remains equal to 1 .

Another solution. For any i one has $\left|a_{i}-b_{i}\right|=\max \left(a_{i}, b_{i}\right)-\min \left(a_{i}, b_{i}\right)$. Now, $a_{i}>a_{1}, \ldots, a_{i-1}$ and $b_{i}>b_{i+1}, \ldots, b_{n}$, so $\max \left(a_{i}, b_{i}\right)$ is greater than the n integers $a_{1}, \ldots, a_{i-1}, \min \left(a_{i}, b_{i}\right), b_{i+1}, \ldots, b_{n}$. Hence, $\max \left(a_{i}, b_{i}\right)$ is in the interval $\{n+1, \ldots, 2 n\}$. Similarly, $\min \left(a_{i}, b_{i}\right)$ is less than the n integers a_{i+1}, \ldots, a_{n}, $\max \left(a_{i}, b_{i}\right), b_{1}, \ldots, b_{i-1}$ and so, lies in the interval $\{1, \ldots, n\}$. Thus, the set $\left\{\min \left(a_{i}, b_{i}\right), i=1, \ldots, n\right\}$ is $\{1, \ldots, n\}$ and the set $\left\{\max \left(a_{i}, b_{i}\right), i=1, \ldots, n\right\}$ is $\{n+1, \ldots, 2 n\}$, and so,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|a_{i}-b_{i}\right|=\sum_{i=1}^{n}\left(\max \left(a_{i}, b_{i}\right)\right. & \left.-\min \left(a_{i}, b_{i}\right)\right)=\sum_{i=1}^{n} \max \left(a_{i}, b_{i}\right)-\sum_{i=1}^{n} \min \left(a_{i}, b_{i}\right) \\
& =\sum_{k=n+1}^{2 n} k-\sum_{m=1}^{n} m=\sum_{m=1}^{n}(n+m)-\sum_{m=1}^{n} m=\sum_{m=1}^{n}(n+m-m)=\sum_{m=1}^{n} n=n^{2}
\end{aligned}
$$

5. The points on the sides of an equilateral triangle are colored with two colors. Prove that there are three points P, Q, R of the same color such that $\triangle P Q R$ is a right triangle.

Solution. Let the points be colored red and blue, and assume, by the way of contradiction, that the statement is wrong. Let A, B, C be the vertices of the triangle, and let $C_{1}, C_{2}, A_{1}, A_{2}, B_{1}, B_{2}$ be the points on the sides of the triangle subdividing each of the sides to three equal parts. Then the lines $\left(B_{1} C_{1}\right)$ and
 $\left(A_{2} C_{2}\right)$ are orthogonal to the line $(A B),\left(C_{1} A_{1}\right)$ and $\left(B_{2} A_{2}\right)$ to the line $(B C)$, $\left(C_{1} B_{1}\right)$ and $\left(A_{2} B_{2}\right)$ to the line $(C A)$, which provides us with a bunch of right triangles with vertices on the sides of $\triangle A B C$.

We claim that any two opposite vertices of the hexagon $C_{1} C_{2} A_{1} A_{2} B_{1} B_{2}$ are colored differently. Indeed, assume that the vertices C_{1} and A_{2} are both red. If one of the vertices $C_{2}, A_{1}, B_{1}, B_{2}$, say C_{2}, is red, then $\triangle C_{1} C_{2} A_{2}$ is right-red (that is, right with red vertices). But if the vertices $C_{2}, A_{1}, B_{1}, B_{2}$ are all blue, then $\triangle A_{1} B_{1} B_{2}$ is right-blue.

It now follows that in at least one of the pairs $\left(C_{1}, C_{2}\right),\left(A_{1}, A_{2}\right)$, or $\left(B_{1}, B_{2}\right)$ the points are colored differently. Without loss of generality, assume that C_{1} is red and C_{2} is blue. Then A_{2} is blue and B_{1} is red. Now, if A is red, then $\triangle A C_{1} B_{1}$ is right-red; if A is blue, then $\triangle A C_{2} A_{2}$ is right-blue.

Another solution. The following proof works in the case the colored triangle is not necessarily equilateral, but an arbitrary acute or right triangle. (For an obtuse triangle, a simple counterexample exists: the longest side is of one color, and the other two sides are of the other color.)

Assume that the statement is wrong. Consider two cases:
Case 1: One of the sides (say, $A B$) is monochromatic (say, red) with at most one point X of the other (blue) color. Then all points on the sides $A C$ and $B C$, except A, B, and, maybe, one more point corresponding to X, are blue: if there is a red point $P \neq A, B$ on $A C$ or $B C$ whose orthogonal projection Q on $A B$ is distinct from X and so, is red, then for any other red point R on $A B$ the triangle $\triangle P Q R$ is right-red. But then there are many right-blue triangles with vertices on the sides $A C$ and $B C$.

Case 2: Each side of the triangle contains at least two points of the same color. Then for any non-vertex point P of the triangle (say, on the side $A B$) its orthogonal projection Q on, say, the side $A C$ must be of different color: if both P and and Q were, say, red, then for any other red point R on $A C$ the triangle $\triangle P Q R$ would be right-red.

But, if P is red and Q is blue, then, for the same reason, the orthogonal projection R of Q on the side $B C$ is red, and the orthogonal projection P^{\prime} of R on the side $A B$ is blue. Now, to get a contradiction, it is enough to show that there exists a point $P \in A B$ such that $P^{\prime}=P$. And indeed, if P is chosen close to vertex A, then P^{\prime} is to the right of P; if P is taken close to B, then P^{\prime} is to the left of P; so, since P^{\prime} depends on P continuously, there must be a
 point $P \in A B$ such that $P^{\prime}=P$.
6. Evaluate $\int_{-1}^{1} \frac{d x}{1+x^{3}+\sqrt{1+x^{6}}}$.

Solution.

$$
\begin{aligned}
\int_{-1}^{1} \frac{d x}{1+x^{3}+\sqrt{1+x^{6}}} & =\int_{-1}^{0} \frac{d x}{1+x^{3}+\sqrt{1+x^{6}}}+\int_{0}^{1} \frac{d x}{1+x^{3}+\sqrt{1+x^{6}}} \\
& =\int_{0}^{1} \frac{d x}{1-x^{3}+\sqrt{1+x^{6}}}+\int_{0}^{1} \frac{d x}{1+x^{3}+\sqrt{1+x^{6}}} \\
& =\int_{0}^{1}\left(\frac{1}{1-x^{3}+\sqrt{1+x^{6}}}+\frac{1}{1+x^{3}+\sqrt{1+x^{6}}}\right) d x \\
& =\int_{0}^{1} \frac{2+2 \sqrt{1+x^{6}}}{\left.1+2 \sqrt{1+x^{6}+\left(1+x^{6}\right.}\right)-x^{6}} d x=\int_{0}^{1} \frac{2+2 \sqrt{1+x^{6}}}{2+2 \sqrt{1+x^{6}}} d x=\int_{0}^{1} d x=1 .
\end{aligned}
$$

