
2015 Rasor-Bareis exam solutions

1. Prove that an = cos(π/2n) is irrational for all integer n ≥ 2.

Solution. We use induction on n. For n = 2, a2 = cos(π/4) = 1/
√
2 is irrational. The formula an =

2a2n+1 − 1 = shows that if an+1 is rational, then an is also rational; hence if, by induction, an is irrational,
then an+1 is also irrational.

2. Let m and n be positive integers such that m/n <
√
2. Prove that m/n <

√
2
(

1− 1
4n2

)

.

Solution. We write a sequence of equivalent inequalities:
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But since m <
√
2n, so m2 < 2n2, and therefore 2n2 −m2 ≥ 1, we see that

2n2 −m2

(
√
2n+m)

√
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>
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(
√
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√
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√
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.

Another solution. Assume that m/n ≥
√
2
(

1− 1
4n2

)

. Then

√
2
(

1− 1

4n2

)

≤ m

n
<

√
2, so 2

(

1− 1

4n2

)2

≤ m2

n2
< 2, so 2− 1

n2
+

1

8n4
≤ m2

n2
< 2,

so 2n2 − 1 +
1

8n2
≤ m2 < 2n2, so 2n2 − 1 < m2 < 2n2,

which is impossible since n2 and m2 are both integers.

3. An equiangular 2015-gon P is inscribed in a circle. Prove that P is regular.

Solution. We only need to prove that the sides of P have the same length.
Let the vertices of P be A1, A2, . . . , A2015, and for each i, let |AiAi+1| = ai.
(We take i modulo 2015, that is, assume that A2016 = A1, A2017 = A2,
etc., so that a2016 = a1.) Then, for any i, we are given that 6 AiAi+1Ai+2

= 6 Ai+3Ai+2Ai+1, and 6 Ai+1AiAi+2 = 6 Ai+2Ai+3Ai+1 since these are angles
subtended by the same chord, so the triangles△AiAi+1Ai+2 and△Ai+3Ai+2Ai+1

are congruent, so ai = ai+2. Hence, a1 = a3 = · · · = a2015 = a2 = a4 = · · · =
a2014.
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Another solution. Let the vertices of P be A1, A2, . . . , A2015, and let the angles
of the polygon be all equal to β. For each i, the triangle OAiAi+1 is isosceles,
thus 6 OAi+1Ai = 6 OAi+1Ai; let us denote this angle by αi. Then, for any
i, αi + αi+1 = αi+1 + αi+2 = β, so αi = β − αi+1 = αi+2, and, hence,
α1 = α3 = . . . = α2015 = α2 = . . . = α2014. It follows that all the triangles
△OAiAi+1 are congruent, and so all the sides AiAi+1 of the polygon have equal
length.
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4. Let n ∈ N and let a1, a2, . . . , an; b1, b2, . . . , bn be all the integers between 1 and 2n ordered so that

a1 < · · · < an and b1 > · · · > bn. Prove that
∑n

i=1 |ai − bi| = n2.

Solution. Let us place the numbers ai, bj in their natural order, say, bn, a1, a2, bn−1, . . . , an, b1, meaning that
bn = 1, a1 = 2, a2 = 3, bn−1 = 4, . . ., b1 = 2n. The “standard” ordering, where ai = i and bi = 2n− i+ 1,
i = 1, . . . , n, then takes the form a1, a2, a3, . . . , an, bn, . . . , b3, b2, b1. For this ordering we have

n
∑

i=1

|ai − bi| = (2n− 1) + (2n− 3) + · · ·+ 1 = n2.
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Any other ordering can be obtained from the standard one by “pushing” some of ak to the right, that is, by
applying a sequence of transpositions of the form

τk,l : . . . , ak, bl, . . . 7→ . . . , bl, ak, . . .

(That is, if ak = m and bl = m + 1 for some m, then after the application of τk,l we have bl = m,
ak = m+ 1, and all other ai and bj keep their values.) If we show that any such transposition preserves the
sum

∑n

i=1 |ai − bi|, we are done. And indeed, under the transposition τk,l, for any i 6= k, l, the difference
ai − bi remains intact. If k < l, then bl, ak < al, bk, and the transposition τk,l decrements |ak − bk| by 1 and
increments |al − bl| by 1. If l < k, then al, bk < ak, bl, and the transposition τk,l increments |ak − bk| by 1
and decrements |al − bl| by 1. Finally, if l = k, the difference |ak − bk| remains equal to 1.

Another solution. For any i one has |ai − bi| = max(ai, bi) − min(ai, bi). Now, ai > a1, . . . , ai−1 and
bi > bi+1, . . . , bn, so max(ai, bi) is greater than the n integers a1, . . . , ai−1,min(ai, bi), bi+1, . . . , bn. Hence,
max(ai, bi) is in the interval {n + 1, . . . , 2n}. Similarly, min(ai, bi) is less than the n integers ai+1, . . . , an,
max(ai, bi), b1, . . . , bi−1 and so, lies in the interval {1, . . . , n}. Thus, the set

{

min(ai, bi), i = 1, . . . , n
}

is

{1, . . . , n} and the set
{

max(ai, bi), i = 1, . . . , n
}

is {n+ 1, . . . , 2n}, and so,

n
∑

i=1

|ai − bi| =
n
∑

i=1

(

max(ai, bi)−min(ai, bi)
)

=

n
∑

i=1

max(ai, bi)−
n
∑

i=1

min(ai, bi)

=

2n
∑

k=n+1

k −
n
∑

m=1

m =

n
∑

m=1

(n+m)−
n
∑

m=1

m =

n
∑

m=1

(n+m−m) =

n
∑

m=1

n = n2.

5. The points on the sides of an equilateral triangle are colored with two colors. Prove that there are three

points P , Q, R of the same color such that △PQR is a right triangle.

Solution. Let the points be colored red and blue, and assume, by the way of
contradiction, that the statement is wrong. Let A,B,C be the vertices of the
triangle, and let C1, C2, A1, A2, B1, B2 be the points on the sides of the triangle
subdividing each of the sides to three equal parts. Then the lines (B1C1) and
(A2C2) are orthogonal to the line (AB), (C1A1) and (B2A2) to the line (BC),
(C1B1) and (A2B2) to the line (CA), which provides us with a bunch of right
triangles with vertices on the sides of △ABC.

b b

b

b b

b

bb

b

A B

C

C1 C2

A1

A2B1

B2

We claim that any two opposite vertices of the hexagon C1C2A1A2B1B2

are colored differently. Indeed, assume that the vertices C1 and A2 are both
red. If one of the vertices C2, A1, B1, B2, say C2, is red, then △C1C2A2 is
right-red (that is, right with red vertices). But if the vertices C2, A1, B1, B2

are all blue, then △A1B1B2 is right-blue.
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It now follows that in at least one of the pairs (C1, C2), (A1, A2), or
(B1, B2) the points are colored differently. Without loss of generality, assume
that C1 is red and C2 is blue. Then A2 is blue and B1 is red. Now, if A is red,
then △AC1B1 is right-red; if A is blue, then △AC2A2 is right-blue. b b
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Another solution. The following proof works in the case the colored triangle
is not necessarily equilateral, but an arbitrary acute or right triangle. (For an
obtuse triangle, a simple counterexample exists: the longest side is of one color,
and the other two sides are of the other color.)

Assume that the statement is wrong. Consider two cases:
Case 1: One of the sides (say, AB) is monochromatic (say, red) with at most
one point X of the other (blue) color. Then all points on the sides AC and
BC, except A, B, and, maybe, one more point corresponding to X, are blue:
if there is a red point P 6= A,B on AC or BC whose orthogonal projection Q
on AB is distinct from X and so, is red, then for any other red point R on AB
the triangle △PQR is right-red. But then there are many right-blue triangles
with vertices on the sides AC and BC.

A counterexample
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Case 2: Each side of the triangle contains at least two points of the same
color. Then for any non-vertex point P of the triangle (say, on the side AB)
its orthogonal projection Q on, say, the side AC must be of different color: if
both P and and Q were, say, red, then for any other red point R on AC the
triangle △PQR would be right-red.
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But, if P is red and Q is blue, then, for the same reason, the orthogonal
projection R of Q on the side BC is red, and the orthogonal projection P ′ of
R on the side AB is blue. Now, to get a contradiction, it is enough to show
that there exists a point P ∈ AB such that P ′ = P . And indeed, if P is chosen
close to vertex A, then P ′ is to the right of P ; if P is taken close to B, then
P ′ is to the left of P ; so, since P ′ depends on P continuously, there must be a
point P ∈ AB such that P ′ = P .

A B

C

b
b

b

b
P

Q

R

P ′

b

b

b

b

b

b

b
P ′=P

Q

R

6. Evaluate

∫ 1

−1

dx

1 + x3 +
√
1 + x6

.

Solution.

∫ 1

−1

dx

1 + x3 +
√
1 + x6

=

∫ 0

−1

dx

1 + x3 +
√
1 + x6

+

∫ 1

0

dx

1 + x3 +
√
1 + x6

=

∫ 1

0

dx

1− x3 +
√
1 + x6

+

∫ 1

0

dx

1 + x3 +
√
1 + x6

=

∫ 1

0

( 1

1− x3 +
√
1 + x6

+
1

1 + x3 +
√
1 + x6

)

dx

=

∫ 1

0

2 + 2
√
1 + x6

1 + 2
√
1 + x6 + (1 + x6)− x6

dx =

∫ 1

0

2 + 2
√
1 + x6

2 + 2
√
1 + x6

dx =

∫ 1

0

dx = 1.
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