
2016 Rasor-Bareis exam solutions

1. Given a set A of real numbers, we are allowed to replace any two distinct numbers a, b from A by
a+b√

2
and a−b√

2
. From initial set S = {1, 2, 4}, can we apply that operation several times to obtain the set

S′ =
{√

2, 2
√
2, 3

}

?

Solution. No. For a set A, define s(A) to be the sum of the squares of the elements of A, s(A) =
∑

a∈A a2.
Then s(A) is invariant under our operation, since for any a, b ∈ R,

(a+ b√
2

)2

+
(a− b√

2

)2

= a2 + b2.

Now, we have s(S) = 21 whereas s(S′) = 19, so S′ cannot be obtained from S by several applications of the
operation.

2. There are 2016 points in the plane such that any triangle with the vertices at three of those points has

area at most 1. Prove that all these points are contained in a triangle of area 4.

Solution. Choose three points A, B, C out of these 2016 points for which the
triangle △ABC has the maximal area. Construct the straight line a through
the point A and parallel to the line BC; the straight line b through the point
B and parallel to the line CA; and the straight line c through the point C and
parallel to the line AB; the triangle T bounded by the lines a, b, c has area
4 area(△ABC) ≤ 4. We claim that all 2016 given points are contained in T .
Indeed, if a point D is, say, on the other side of the line c than the points A,
B, then the distance from D to AB is larger than the distance from C to AB,
so area(△ABD) > area(△ABC), which contradicts the choice of △ABC.

b

b

b

A

B

C

a
b

c

bD

T

b
b

b

b

b
b
b
b

b
bb b

b
b b

b b

b

3. Let n ≥ 2 and let a1, . . . , an > 0; prove that
a21
a2

+
a22
a3

+ · · ·+ a2n−1

an
≥ 4(a1 − an).

Solution. For any b, c > 0 we have b2 + 4c2 ≥ 4bc, we have b2

c
≥ 4(b − c). So, for all i = 1, . . . , n − 1,

a2
i

ai+1
≥ 4(ai − ai+1). Summing these up, we get

n−1
∑

i=1

a2i
ai+1

≥
n−1
∑

i=1

4(ai − aj+1) = 4(a1 − an).

4. Let (an) be a bounded increasing sequence of positive real numbers. Prove that

∞
∑

n=1

(

1− an
an+1

)

< ∞.

Solution. This is a series with nonnegative terms, so the comparison criteria apply to it. For any n we have

1− an
an+1

=
an+1 − an

an+1

≤ an+1 − an
a1

.

Let a = lim an. The series
∑∞

n=1

an+1−an

a1
is telescoping and converges to a−a1

a1
, so the initial series also

converges.

Another solution. Let, again, a = lim an. We have an/an+1 −→ a/a = 1 as n −→ ∞, so 1 − an
an+1

−→ 0.

It is known that lim
x→0

log(1− x)

x
= −1, so

(

log
an+1

an

)

/
(

1− an
an+1

)

=
(

− log
an

an+1

)

/
(

1− an
an+1

)

−→ 1, thus

1



by (the second) comparison principle our series converges iff the series
∑

log
an+1

an
does. And we have

∞
∑

n=1

log
an+1

an
= log

∞
∏

n=1

an+1

an
= log

a

a1
.

5. Prove that there are infinitely many positive integers not representable in the form n2 + p, where n ∈ N

and p is prime.

Solution. Let us show that inifinitely many (in fact, “almost all”, in some sense) perfect squares m2, m ∈ N,
are not representable this way. Indeed, if m2 = n2 + p, then p = m2 − n2 = (m − n)(m + n), which is
impossible unless m = n + 1 and p = m + n = 2m − 1. So, m2 is representable in the form n2 + p only if
2m− 1 is prime; but there are infinitely many m for which this is not the case.

6. Let α, β, γ be the angles of a triangle. If sinα, sinβ, sin γ are all rational, prove that cosα, cosβ, cos γ
are also rational.

Solution. Let a, b, and c be the length of the sides of the triangles opposite to the angles α, β, and γ
respectively. After rescaling the plane, we may assume that a = 1. By the sine theorem for triangles,
we have sinα/a = sinβ/b = sin γ/c, so b = sinβ/ sinα and c = sin γ/ sinα; since all these sines are
rational, we obtain that b and c are rational. But then by the cosine theorem, cosα = (b2 + c2 − a2)/(2bc),
cosβ = (c2 + a2 − b2)/(2ca), cosα = (a2 + b2 − c2)/(2ab) are also rational.
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