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PROBLEM 1: Given two lines tangent to circle O at B 
and C from a common point A, show that the circle 
passes through the incenter of triangle ABC.1 
 
 
 
 
 
 
 
 
 
 

SOLUTION 1 (JMU):  Since AB and AC are tangents, 
each of the base angles of the isosceles triangle ABC 
measures half of BOC.  The sum of the angles between 
the base and the bisectors of the base angles is 
therefore also half of BOC. Hence, wherever Q may be, 
the intersection of the bisectors, may be, BQC is 180° 
– BOC/2.   
 
Pick any point P on the arc exterior to the triangle; 
BPC = BOC/2.  Since BPC and BQC are 
supplementary, BQCP must be a cyclic quadrilateral.  

Since B, C, and P lie on circle O, so must Q, and it is the incenter of ABC. � 
 
 
PROBLEM 2:  What is the relationship between the radii of 
three circles of different size all tangent to the same line and 
each externally tangent to the other two?2 
 
 
 
 
 
SOLUTION 2 (F&P):  The hypotenuse of the right triangle is 
                                                 
1 Fukagawa & Pedhoe 1989, 1.1.4; lost tablet from Ibaragi, 1896; no solution given. 
2 Fukagawa & Pedhoe 1989, 1.1.1; well-known; tablet from Gunma, 1824. 
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r1 + r2.  Its short leg is r1 – r2, so the other leg is the square 
root of (r1 + r2)2 – (r1 – r2)2.  I.e., AB is 212 rr  (twice the 
geometric mean of the radii).   
Likewise, AC =  312 rr  and BC =  322 rr .  Adding and 

dividing through by 3212 rrr , we obtain 

123

111
rrr

+= .� 

 
 
 
PROBLEM 3:  Suppose two circles tangent to a common line at A and B are tangent to each 
other externally; that a third circle is tangent to the line and both of them externally; and 

that a fourth circle through A and B is tangent to the third circle internally.  Show that the 
fourth circle and the line define a circular segment such that, if the radii of the circles 
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through A and B are varied, the small circle tangent to them remains tangent to both the 
arc and line of the segment.3 
 
 
SOLUTION 3 (JMU after A. Bogomolny):  Do the easy case first:  M = C.  Then RA = RB = 
R, 4r = R, and AB = 2R = 8r. If RO is the radius of the fourth circle, we have AM⋅MB = 
NM⋅MO or 16r2 = 2r(2RO – 2r), which leads to 5r = RO or RO = 5AB/8.  Since this 
relationship depends only on the relative locations of A, B, and O, changes in RA, RB, and 
r will not affect it.   
 
Now consider the hard case:  M ≠ C.  Writing m for AM = BM = ½AB, we have BO = 
5m/4 and CO = 3m/4 because BMO is a 3:4:5 right triangle.  Writing x for AC and y for 
CB, we also have m = (x + y)/2 and MC = (x – y)/2 = KO.  Call the latter n.   
 
We now calculate r two ways:  first, using the Pythagorean Theorem in right triangle 
KOQ, then using the formulae derived in problem 2.  On the one hand, we have (5m/4 – 
r)2 – (3m/4 + r)2 = n2, which reduces quickly to m2 – 4mr = n2.  Moreover, m2 – n2

 = xy, 
so 4mr = xy.  On the other hand, we have x² = 4RAr, y² = 4RBr, and (x + y)² = 4RARB. 
Combining these three equations, we get xy = 2r(x + y).  But this is again xy = 4mr.   
 
In other words, for any particular C, r = xy/4m is necessary both for circle Q to be 
inscribed in the circular segment defined by fixed A, B, and O and for all the circles 
above the line to be tangent as required.  � 
 
 
PROBLEM 4: 
 
Given two 
unequal 
circles with 
concurrent  
diameters 
AB and CD 
as shown, 
tangents 
from A (resp. 
D) to O2 
(resp. O1), 
and circles tangent to B (resp. C) and the two tangents from A (resp. D), prove that the 
radii of these two circles are equal.4 
SOLUTION 4 (F&P):   

                                                 
3 Fukagawa & Pedhoe 1989, 1.1.2; lost tablet from Miyagi, n.d.; the hint ABR 8

5= is given, but no 
solution. 
4 Fukagawa & Pedhoe 1989, 1.3; lost tablet from Aichi, 1842; solution given. 
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From ΔAT1O1 
~ ΔAT2O2, it 
follows that 
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and so  
 
 
r′1(AB + BC + CO2) = r2(AB – r′1).  Hence  
 

2r′1r1 + r′1BC + r′1r2 = 2r1r2 – r2r′1 
2r′1r1 + r′1BC + 2r′1r2 = 2r1r2 

r′1(2r1 + BC + 2r2) = 2r1r2 
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This is algebraically symmetrical:  we would have arrived at the same right-side 
expression for r′2 if we had started at the other end of the figure.  Thus r′1 = r′2.   � 
 
 
 
 

PROBLEM 5:  O1, O2, and O3 all 
have radius r, centers in line m, 
and form a chain as shown.  Line l 
passes through O2 and is tangent 
with O1 and O3 on opposite sides 
of m.  Circle O(r′) is internally 
tangent to O1 and O3, and is cut by 
l in P and Q.  Prove that PQ =  r′ 
+ 3r.5

                                                 
5 Fukagawa & Pedhoe 1989, 1.3.3; tablet from Ibaragi, 1871; no solution given. 
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SOLUTION 5 (JMU):  The trick is to 
superimpose the simplest case on 
the general case.  Start with O 
coincident with O2:  P′Q′ = 6r = r′ 
+ 3r is obvious. 
 
Now, for O below O2 on the 
perpendicular to m, PQ is longer  
than P′Q′ by PP′ – QQ′.  That is, 
PQ – 6r = PP′ – QQ′.  The theorem 
asserts that PP′ – QQ is equal to the 
change in length of r′, which is 
longer than before by r′ – 3r. But  
PQ – 6r = r′ – 3r if and only if PQ 
= r′ + 3r. � 
 
 
 
 
 

 
PROBLEM 6:  Given right triangle 
∆ACB and its circumcircle O1(r1), 
construct circle O2(r2) tangent 
externally to legs a and b and 
internally to circle O1.  (Such a 
circle is called mixtilinear.)  
Prove that r2 = a + b – c.6 
 
 
 
 
 
 
 
 
 
 
 

 
 

                                                 
6 Fukagawa & Pedhoe 1989, 2.2.7; lost tablet from Hyōgo, n.d.; no solution given. 
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SOLUTION 6 (JMU):  The trick is 
to add the incircle O3(r3) and first 
prove that r2 = 2r3, which is 
presented as a separate problem.7  
It is easily done by drawing 
O2TAC  and O2TBC, and noting that 
O3 touches all four sides of 
square CTACO2TBC, each side of 
which is 2r3.   
 
Now in any triangle with 
semiperimeter s, the distance 
from C to the point of tangency 
of the incircle is s – c.  So in a 
right triangle such as ACB, r3 = s 
– c = (a + b – c)/2, which 
immediately implies r2 = a + b – 
c. � 
 
 
 
 
 
PROBLEM 7:  Right triangle ACB is partitioned into two triangles by the altitude CH as 
shown.  Prove that this altitude is the sum of the radii of the three incircles.8 

 
SOLUTION 7 (JMU):  All 
three triangles are right.  
We use the corollary just 
stated to calculate 2r1 = a 
+ b – c, 2r2 = BH + CH – a, 
and 2r3 = AH + CH – b.  
Adding these equations, 
we get 2r1 + 2r2 + 2r3 = 
AH + BH + 2CH – c = 
2CH.  So r1 + r2 + r3 = CH. 
� 
 
 
 
 

PROBLEM 8:  Given two circles of equal radius inscribed as shown below, prove 
)( assAP −= .9 

                                                 
7 Fukagawa & Pedhoe 1989, 2.3; tablet from Iwate, 1842; no solution given. 
8 Fukagawa & Pedhoe 1989, 2.3.2; tablet from Iwate, n.d.; no solution given. 
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SOLUTION 8 (JMU):  In the figure above, r is the inradius of ΔABC, s is its semiperimeter, 
ΔABP and ΔACP have semiperimeters s1 and s2, respectively, but the same inradius k.  
Using x for AP, observe that s1 + s2 = s + x (we will use this fact immediately and once 
again later).  Adding areas, rs = ks1 + ks2.  Hence x = (rs/k) – s.  By similar triangles,  
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s
xs
cssxs

xs
bss

−
−
−

==−
−
−

21

)()(  

Expand each equation, and solve their sum for x: 
 

)(

2)(2
2)(2)(

2)(2)()2(
)(

)(

22

22

2

2
2121

2
22

2
11

assx

sasx
sasxxsx

xxsxsxxsssa

xssxsxssscbss
xxssxsscss

xxssxssbss

−=

−=

−−+=

−+=++−

−+=++−−−

−=+−−

−=+−−

 

                                                                                                                                                 
9 Fukagawa & Pedhoe 1989, 2.2.5; surviving tablet from Chiba, 1897; no solution given. 
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COROLLARY:  If ABC is a right triangle, then 
cbaab

abk
+++

=
2

.10   

PROOF:  We have Δ = k(b + BP + AP)/2 + k(c + CP + AP)/2 = k(a + b + c + 2AP)/2, so 

APcba
abk

2+++
= .  In a right triangle, s – a = r, so AP2 = s(s – a) = rs = Δ = ab/2.  That 

is, 4AP2 = 2ab or abAP 22 = . � 
 
PROBLEM 9:  ABCD is a square with side a and diagonal AC.  The incircles of ACN and 
BCN are congruent.  What is their radius r in terms of a?11 

 
 
SOLUTION 9 (JMU):  Because BCN is a right 
triangle, r = (BC + BN – CN)/2 (see problem 
6).  The congruence of the two incircles 
implies )(2 ABssCN −= , where s is the 
semiperimeter of ABC (proven in problem 8).   

We know 2aAC = , so aas +=
2
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10 This is Fukagawa & Pedhoe 1989, 2.2.3; lost tablet from Miyagi, 1847; equation given, no solution 
provided. 
 
11 Fukagawa & Pedhoe 1989, 3.1.7; surviving tablet from Hyōgo, 1893; the solution given, 

ar )121(2
1 −+=  , is clearly an error (indeed, 2

ar < is obvious from the diagram). 
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PROBLEM 10:  A square with one 
diagonal is cut by a line from a third 
vertex to the midpoint of an opposite 
side.  A circle is inscribed in the 
resulting triangle opposite the midpoint.  
What is its radius?12 
 
SOLUTION 10 (A. Bogomolny):  
Imagine completing the figure as 
shown below. 
 
By congruent triangles, 
it is easy to see that 
the top of the square 
bisects the sides of the 
large right triangle.   

Hence the two lines within the square are medians of the large right 
triangle.  The apex of the inscribing triangle is its centroid, and divides 
the two lines within the square in the ratio 1 : 2.  For the same reason, if 
the side of the square is a, the altitude of the inscribing triangle is a3

2  
(imagine a line parallel to the top and bottom of the square running 
through the apex of the triangle).     

Now the diagonal of the square is 2a  and other line in the square is 
2

5a .  The sides of 

the inscribing triangle are 3
2  of these lengths, respectively.  But in any triangle with base 

a, altitude thereto h, perimeter p, and inradius r, 2Δ = pr = ha.  Consequently, 
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12 Fukagawa & Pedhoe 1989, 3.1.3; surviving tablet from Miyagi, 1877; solution given in the form  
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PROBLEM 11:  A right triangle has 
three circles tangent to its legs and 
internally tangent to its circumcircle:  
O1 is tangent to both legs; O2 and O3 
are tangent to legs AC and BC at their 
midpoints M and N, respectively.  
Show that r1

2 = 32r2r3.13 
 
SOLUTION 11 (JMU):   The diameters 
of O2 and O3 are the sagittae of chords 
AC and BC:  vb = 2r2 and va = 2r3.   
 
Lemma:  In any right triangle, the 
inradius r = bavv2 .  Proof: 
 
va = 2R – b/2  vb = 2R – a/2  
2va = c – b  2vb = c – a  
 4vavb = ab – c(a + b – c) 
 4vavb = ab – 2cr 
 2vavb = ab/2 – cr 
 2vavb = rs – cr = r(s – c) = r2. � 
 
But r1 = 2r (problem 6), so r2 = r1

2/4 = 8r2r3.  Thus r1
2 = 32r2r3. � 

 
PROBLEM 12:  In ΔABC, AB = BC. If one chooses D on AB and J on CD such that 
AJ ⊥ CD and the incircles of ΔACJ, ΔADJ, and ΔBCD all have radius r, then r = 

AJ/4.14 
 
SOLUTION 12 (JMU):  
 
The trick to solving the problem 
expeditiously is to clarify what is 
given and to prove the  converse first.   
 
Notice that the only connection 
between AB = BC and the geometry 
of ΔACD is that the incircle of 
ΔABC (dashes) is tangent to AC at 

its midpoint.  The two incircles of ΔACJ and ΔADJ cannot be tangent to the shared side 
AJ at the same point, as shown, unless J is the point of tangency of the incircle of ΔACD 
(dots) with side CD.15 Hence AC = AD. And the two incircles cannot be congruent unless, 
in addition, either ∠CAJ = ∠DAJ or AJ ⊥ CD, in which case, ΔACJ ≅ ΔADJ and the 

                                                 
13 Fukagawa & Pedhoe 1989, 2.4.6; surviving tablet from Iwate, 1850; no solution given. 
14 Fukagawa & Rothman 2008:194–96, 212–16 
15 Given as an exercise Honsberger 1995:13, 157. 
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other condition follows. Therefore, given a fixed isosceles ABC, if the congruence of all 
three small incircles implies r = AJ/4, as the problem asserts, then the converse must also 
be true.  Indeed, it is easier to prove. 
 
In the figure above, let a, b, d, and h be the lengths of CD, AD = AC, DN, and AJ,  
respectively.  Let r1 and r2 be the radii of the incircles of ΔACD and ΔBCD, respectively. 
We use two lemmas, which we prove later:  
 

1. a – b = 2d 
2. 2r1r2 = ad 

 
Given h = 4r, square the equation for the inradius of a right triangle b = h + a/2 – 2r = 2r 
+ a/2 to get b2 = 4r2 + 2ar + a2/4, and equate this with the Pythagorean result b2 = (a/2)2 
+ h2 = a2/4 + 16r2.  This yields a = 6r, which, with h =4r, implies b = 5r.  Hence, by 
Lemma 1, 2d = r.   
 
Now ΔACD = ha/2 = 12r2 = r1s, where s is the semiperimeter of ΔACD or 8r.  Thus r1 = 
3r/2 = 3d.   Using Lemma 2, we find r2 = a/6 = r.  □ 
 
From this, it is clear that solving the original problem comes down to proving, without 
knowing the value of h, that ΔACJ 
and ΔADJ are 3:4:5 right triangles.   
 
It’s easy to show in the adjoining 
figure that ΔDTU ~ ΔDO2U.  This 
means that DU is the mean 
proportional between DT and  O2U 
= DT + DN.  In terms of lengths, 
we therefore have  

 
 
 

a/2 – r + d = [r2 + (a/2 – r)2]/(a/2 – r) 
(a/2 – r)2 + d(a/2 – r) = r2 + (a/2 – r)2 

d(a/2 – r) = r2 
ad/2 – dr = r2 

r1r – dr = r2 
r1 – d = r. 

 
(Lemma 2 takes the form 2r1r = ad since we are assuming r2 = r.)   
 
Since JS = r, O1S = d.  Thus JO1 = r + d = 3d = r1.   
 
Hence, by Lemma 2, 2rr1 = 2(2d)(3d) = 12d2 = ad, so a = 12d = 6r.  Since a – b = 2d 
(Lemma 1), b = 10d = 5r. And because ADJ is a right triangle, a/2 = 3r and b = 5r imply 
h = 4r.  □ 
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The lemmas follow the general case of 
any triangle ABC with incircle I.  Draw 
a cevian CD and the incircles O1  and O2 
of the resulting triangles ACD and BCD.  
Label the points of tangency of these 
incircles as shown.  Then EH = GK = 
DN. 
 
PROOF:  By equal tangents, CE = CF (1), 
and  

 
AE = AG BF = BG CM = CL  DJ = DK 
AH = AK BM = BN  CH = CJ  DN = DL. 
      

Subtracting the equations in second row from those in the first, we get 
 
 EH = GK (2) FM = GN (3) CM – CH = JL (4) JL = DK – DN (5) 
 
Equating the left and right sides of (4) and (5), 
 

CM + DN = DK + CH 
(CF + FM) + DN = DK + (CE + EH) 
(by 1) FM + DN = DK + EH 
(by 3) GN + DN = DK + EH 

(GN – DG) + DN = (DK – DG) + EH
2DN = GK + EH 

(by 2) DN = GK (6). 
 
Linking equations (2) and (6), EH = GK = DN.  □ 
 

 
Many more inferences can be drawn 
from this figure, but we need just two.   
 
Lemma 1 follows immediately if E and 
J are the midpoints of AC and CD, 
respectively.  Then CD/2 – AC/2 = EH = 
DN.  In the problem, as explained earlier, 
J must be the midpoint of CD.  
Requiring that ABC be isosceles forces 
E to be the midpoint of AC.   
 

Lemma 2 in the general case is r1r2 = DJ·DL.  The dashed lines in the figure above show 
that (r1 + r2)2 +  (DJ – DL)2 = (O1O2)2 = (r1 – r2)2 +  KN2, but KN = DK + DN = DJ + DL 
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by equal tangents.  The rest is just algebra.  The traditional solution proves this relation 
for the problem figure, but it is true even for scalene ΔABC. 
 
PROBLEM 13:  Prove that the sums 
of the radii of the incircles in both 
triangulations of a (convex) cyclic 
quadrilateral are equal.16   
 
SOLUTION 13 (JMU):  There are 
many ways to prove this theorem.  
I have put together the following 
sequence of results on the basis of 
hints from several different sources.17 
 

Lemma 1: The bisector from one vertex of a triangle, 
extended, cuts the circumcircle at the midpoint of the 
arc subtended by the opposite side of the triangle, 
which is the center of the circle defined by the other 
two vertices and the incenter. 
 
Proof: ∠BIF = ∠BAI + ∠ABI, that is, half the sum of 
the vertex angles at A and B. ∠IBF = ∠CBI + ∠CBF = 
∠CBI + ∠CAF, the same sum. So ∠BIF = ∠IBF and 
ΔBFI is isosceles. By similar reasoning, so is ΔCFI. 
Hence BF = IF = CF. Moreover, since the ∠BAF and 

∠CAF, which subtend arcs BF and CF, respectively, are equal, F turns out to be the 
midpoint of arc BC.  □ 
  
If we add another point D on the circumcircle as 
shown, it immediately follows that DJ and AI, 
extended, concur at F and that all four line segments 
BF, IF, JF, and CF are equal. 
 
Complete the quadrilateral ABCD and construct the 
eight bisectors that meet at E, F, G, and H, the 
midpoints of arcs AB, BC, CD, and DA, respectively. 
(The diagonals of the quadrilateral have been 
omitted.) It is easy to prove that EH and FG are 
perpendicular: 
 

                                                 
16 Fukagawa & Pedhoe 1989, 3.5(1); lost tablet from Yamagata, 1800.   
 
17 Most helpful is Ahuja, Uegaki, and Matsushita 2004. 
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Lemma 2: If a circle is partitioned into four sectors, the 
lines joining the midpoints of the arcs are 
perpendicular. 
 
Proof: By hypothesis, 2π = 2α + 2β + 2γ + 2δ. Add 
auxiliary line GH. ∠GHE = ½(α + β). ∠FGH = ½(γ + 
δ). So ∠GSH = π – ½(α + β + γ + δ) = π – π/2 = π/2. □ 
 
This leads to the last lemma, which is an impressive 
theorem in its own right: 
 

Lemma 3: The incenters of the four triangles formed by the sides of a convex cyclic 
quadrilateral and its diagonals are the vertices of a rectangle with sides parallel to the 
lines joining the midpoints of the arcs subtended by the sides of the quadrilateral. 
 
Proof: In the figure, ∠DEH and ∠HEC subtend equal 
arcs, so EH bisects ∠DEC. Lemma 1 assures that EI = 
EL. Thus ΔEIL is isosceles with base IL perpendicular 
to EH. Applying the same reasoning at H, we conclude 
that JK is perpendicular to EH, and therefore parallel 
to JL. Likewise, IJ and LK are parallel and 
perpendicular to FG. Since EH and FG are themselves 
perpendicular (Lemma 2), IJKL is a rectangle.  □ 
 
 
We are now ready to prove the original theorem, 
which states: 
 
The sums of the radii of the incircles in both triangulations of a (convex) cyclic 
quadrilateral are the same. 

 
PROOF: If we draw lines through L 
and J parallel to AC (left) and through 
I and K parallel to BD (right), the 
perpendicular distances between each 
pair of lines will be the sum of the 
radii of the corresponding pairs of 
incircles. To prove these sums are 
equal, it suffices to show that the 

parallelogram produced by superimposing the two sets of parallel lines is a rhombus, 
because the two altitudes of a rhombus are equal.  
 
To that end, observe that ∠ACG = ∠DBG because they subtend equal arcs. ∠BGF = 
∠CGF for the same reason. Hence, ΔBUG ~ ΔCVG with ∠BUG = ∠CVG.  That is, AC 
and BD cut GF at the same angle in opposite directions.
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Since EH and FG are perpendicular 
(Lemma 2), AC and BD likewise cut 
EH at W and X at the same angle in 
opposite directions. Hence all lines 
parallel to the diagonals of the 
quadrilateral cut the axes of 
rectangle KLMN (Lemma 3) at the 
same angles. So the four triangles 

based on the sides of the rectangle that, together with it, make up the parallelogram, are 
all isosceles, and we have a rhombus (four sides equal). (Another necessary and sufficient 
condition for a parallelogram to be a rhombus is that its diagonals be perpendicular: the 
diagonals of this rhombus lie on EH and FG.)  □ 
 
COROLLARY:  The sums of the inradii in any of triangulation of a (convex) cyclic polygon 
are all the same. 
 

 
For example, here are two of 
triaangulations of the same cyclic 
hexagon. There are many others. Yet 
the sum of the radii of the incircles is 
the same for all of them. 
 
 
 

PROOF: The previous theorem establishes this theorem for cyclic quadrilaterals. Assume 
it holds for cyclic n-gons. Every cyclic polygon of n + 1 sides can be analyzed as a cyclic 
n-gon plus a triangle by selecting three adjacent vertices of the starting polygon for the 
triangle and regarding all the vertices other than the middle one of these three as a cyclic 
n-gon. Since the same triangle is added to every triangulation of the cyclic n-gon, the 
theorem holds for the larger polygon too.  □ 
 
This corollary is frequently described as a theorem by itself. 
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PROBLEM 14:  In square ABCD, CE is tangent to semicircle BO1D.  O2 is the incircle of 
ACE.  The tangent to O1 and O2 meets the sides of the square in F and H and intersects 
CE in G.  O3 is the incircle of CGH.  Prove that r2/r3 = 3/2.18 

 
SOLUTION 14 (JMU):  First, we prove 
CE ⊥ FH.  Extend BD, CE, and FH 
and draw the normals KO1 and LO1 as 
shown below.  Mark equal angles 
noting where parallels are cut by 
transversals, complementary acute 
angles in known right triangles, 
vertical angles, and equal angles in 
similar triangles.  There are two kinds 
of acute angles in each right triangle.  
Both kinds are found at O1; since they 
are complementary, KO1L must be a 
right angle.  All the right triangles 
containing both kinds of acute angle 
are similar, and, by the lemma proved 
presently, have sides in the ratio 3:4:5.  

 
Let s be the side of square 
ABCD and t = s/2 be the side 
of square GLO1K.  Note pairs 
of tangents from the same 
points to the same circles:  
BE = EK, CD = s = CK, and 
DH = HL.  Because of this 
last pair, if we extend LO1 to 
meet CD in M, ΔHLM ≅ 
ΔHDI.  For later convenience, 
say that a, b, and c are the 
lengths of DI = LM, DH = 
HL, and HI  = HM, 
respectively, noting that 
a:b:c :: 3:4:5. 
 
 
We now prove the key lemma.  In the auxiliary figure below, we extend KO1 to meet AB 
in N, and add lines EO1 and CO1.  EO1 and CO1, which form congruent triangles with 
radii of and equal tangents to circle O1, bisect supplementary angles, so ∠CO1E = 90o 
and KO1 is the altitude to the hypotenuse of right ΔCO1E. Hence KO1

2 = CK·EK, or t2 = 
s·EK = 2t·EK. Therefore EK = t/2 = BE.  Observe that this implies AE = ¾ AC, so ΔACE 
is a 3:4:5 right triangle.   

                                                 
18 Fukagawa & Pedhoe 1989, 3.2.5, lost tablet of 1838 from Iwate prefecture; no solution given. 
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Now, returning to the figure above, in ΔACE, AE + 
AC – CE = 2r2 =  (s – BE) + s – (s + EK) = s – 2BE 
= t (by the lemma).  Thus r2 = t/2.  In ΔCGH, CG 
+ GH – CH = 2r3 = (s – t ) + (t + HL) – (s – DH) = 
2b.  Thus r3 = b.   
 
But c/b = 5/4, so b + c = 9b/4. In ΔDO1M, t/(b + c) 
= 4/3.  Thus 3t = 9b, or r3 = t/3, r2/r3 = 3/2.  □ 
 
 
 
 
 

 
 
PROBLEM 15:  In circumscribed triangle ABC, let M´ and M be the midpoints of, 
respectively, chord and arc BC.  Then va = M´M is the SAGITTA of the chord a.  Prove that 
the square of the distance from a vertex of a triangle to its incenter is four times the 
product of the sagittae to the adjacent sides.19 
 
SOLUTION 15 (F&P): 
 
Lemma:  If r is the inradius and s the semiperimeter of triangle ABC, then (s – b)(s – c) = 
r2 + 2var.  (Similar statements hold for the other two sides.) 
 
Proof:  We write a´ for s – a, etc. for convenience. 
 
Square Heron’s Formula and divide by s:  r2s = 
a´b´c´ or a´b´c´ = r2(a´ + b´ + c´).  Divide by r3:  
(a´/r)(b´/r)(c´/r) = a´/r + b´/r + c´/r.  
(Trigonometrically speaking, the product and sum 
of the cotangents of half of each angle in a triangle 
are equal.) 
 
AM bisects A because bisectors of angles pass 
through the midpoints of the circumcircle arcs they 
subtend.  ∠MAB = ∠BCM (both subtend arc BM) = 
∠CAM, so a´/r =  CM´/M´M = (½CB)/va =  
(b´ + c´)/2va.  Put this in the equation derived from Heron’s Formula: 
 

(b´ + c´)/2va + b´/r + c´/r = [(b´ + c´)/2va](b´/r)(c´/r). 
 
Multiply through by 2var2: 

                                                 
19 Fukagawa & Pedhoe 1989,  2.2; lost tablet of 1825 from Musashi; solution provided.   
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r2(b´ + c´) + 2var(b´ + c´) = (b´ + c´)(b´c´).   

 
Now divide by (b´ + c´): 
 

r2 + 2var = b´c´.  
 
Likewise, 

r2 + 2vbr = a´c´ 
r2 + 2vcr = a´b´.  □ 

 
To solve the problem, add and multiply the last two equations to obtain 
 

2r2 + 2r(vb + vc) = a´(b´ + c´)           and              cba
a

vrvrr cb ′′′=
′

++ )2)(2(2

. 

 
Using these values, the equation r2(a´ + b´ + c´) = a´b´c´ becomes 
 

a
vrvrr

a
vvrrar cbcb

′
++

=⎥
⎦

⎤
⎢
⎣

⎡
′

++
+′

)2)(2()(22 22
2 , 

 
which reduces to a´2 + r2 = 4vbvc.  But a´2 + r2 = AI2.  □ 
 
COROLLARY:  since 4vbvc = AI2, 4vavc = BI2, and 4vavb = CI2, 43(vavbvc)2 = (AI·BI·CI)2, or  
8vavbvc = AI·BI·CI. 
 
 
 
 
PROBLEM 16:  Find an expression for the 
radius of the small circle in the figure at the 
right in terms of the sides, inradius, and/or 
sagitta shown of the partially circumscribed 
triangle.20

                                                 
20 Fukagawa &Pedhoe 1989, 2.2.8 (1781, n.pl.), “a hard but important problem.”  A formula for the desired 
radius is given, but not proved. 
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SOLUTION:  The last steps are not too hard, but to get to them requires proving a difficult 
lemma and using some of its implications.21  The proof presented here is a restatement of 
a proof by “yetti” posted on MathLinks, 1 January 2005. 
 

Lemma: 
 
Through vertex A of ΔABC, draw cevian AD 
with D on BC.  Draw circle C1 tangent to AD at 
F, CD at E, and the circumcircle C2 of ΔABC at 
K. Then the chord EF passes through the 
incenter I of ΔABC.   
 
 
 
 

 
 
1.  Let M and N be the intersections of KE and 
KF with the circumcircle C2. Then MN || EF 
because C1 is a dilation of C2 with respect to K.  
We define M as the image of E under this 
dilation.  Since BC is tangent to C1 at E, the 
tangent to C2 through M must be parallel to 
BC.  But the tangent parallel to the chord 
subtending an arc touches the arc at its 
midpoint.  Thus M is the midpoint of BC, 
meaning that AM is the bisector of BAC and 
hence includes the incenter I. 
 
 
 

2.  Let J be the intersection of AM and EF, and 
consider the circles passing through A and K.  
One of them, C2, contains the chord MN.  The 
corresponding chord for the circle through F 
must lie on EF because MN || EF.  And just as F 
is the image of N with respect to the radical axis 
AK, J is the image of M.  Thus the quadrilateral 
AFJK is cyclic.   
 
 
 

 
 
                                                 
21 Ayme (2003).  Y. Sawayama, an instructor at the Central Military School in Tōkyō published the lemma 
in 1905 coincidental to solving another problem. 
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3.  We now apply the Miquel Theorem to AFJ, 
selecting F on AF, J on AJ, and E on FJ.    The 
three circles each passing through two of these 
points and the vertex of AFJ not on the line 
joining them are all concurrent in K.  Since E 
lies on the extension of FJ, it cannot cut AJ (i.e. 
AM) twice, so the circumcircle of KEJ is tangent 
to AM at J . 
 
 
 

4.  Circle C3 centered at M and radius BM 
passes through I because AM bisects angle 
BAC.  This circle is also orthogonal to the 
circumcircle of ΔBKE because BKE = MAB 
= MAC = MBE, and therefore, by similar 
triangles, EK·EM = BM2.  (Indeed, the 
circumcircle of ΔBKE is its own inverse with 
respect to C3.)  Since M lies on EK, all 
circles with chord EK must also be 
orthogonal to C3.  That includes the 
circumcircle of KEJ.  Therefore, MB = MJ.  
But MB = MI, so I = J.  □ 
 
 

Remark: 
 
Ayme (2003) uses this lemma to solve a 
famous problem of V. Thébault.  The 
Sawayama-Thébault Theorem states that the 
centers of the two circles P and Q and the 
incircle I of triangle ABC are collinear.  We 
do not need the theorem itself (the last 
sentence of the proof) to solve the problem, 
but we do need the other observations. 
 
To quote Ayme, “According to the hypothesis, 
QG ⊥ BC, BC ⊥ PE; so QG || PE. By [the] 
Lemma …, GH and EF pass through I. 
Triangles DHG and QGH being isosceles …, 

DQ is (1) the perpendicular bisector of GH, [and] (2) the D-internal angle bisector of 
triangle DHG.  Mutatis mutandis, DP is (1) the perpendicular bisector of EF, [and] (2) 
the D-internal angle bisector of triangle DEF.  As the bisectors of two adjacent and 
supplementary angles are perpendicular, we have DQ ⊥ DP. Therefore, GH||DP and DQ 
|| EF.  Conclusion:  using the converse of Pappus’s theorem … applied to the hexagon 
PEIGQDP, the points P, I and Q are collinear.”  □ 
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Unfortunately, the labels F and H are reversed in Ayme’s paper, and, since transversals 
cut parallel lines in equal corresponding angles, the invocation of Pappus is rather gilding 
the lily.   
 
Solution proper:  The Sawayama Lemma implies 
that the incenters of ABC, ACD, and ABD lie on 
GH and EF.  Hence there are pairs of similar right 
triangles with inradii for one leg.  In the figure, we 
note five of them and the equations they imply: 
 
 
(1) DEP ~ DJcIc   ⇒  xcrc = (sc – b)·DE 
(2) DJcIc ~ IJE  ⇒  rrc = (sc – b) ·EJ 
(3) DJcIc ~ DJbIb  ⇒  rbrc = (sc – b)(sb – c)  
(4) BJI ~ BJbIb  ⇒ rb(s – b) = r(sb – AD) 
(5) BJI ~ AMN  ⇒  vc(s – b) = (b/2)r 
 
Since AD is common to both ABD and ACB, we also know sb + sc = s + AD.  This allows 
us to express sb – AD and DE in (1) and (4) using only terms that occur in the other three 
equations.  Obviously sb – AD = s – sc, which is easily changed to (s – b) – (sc – b).  From 
the figure, DE – EJ = DJ = CD – CJ = CD – (s – c).  Replacing s with sb + sc – AD, the 
last expression becomes (CD – sc + AD) – (sb – c) = (2sc – b – sc) – (sb – c) =  
(sc – b) – (sb – c). 
 
EJ is not so easily eliminated, but dividing (1) by (2), xc/r = DE/EJ.  Since as just shown 

DE – EJ = (sc – b) – (sb – c), this means 
EJ

csbs
r
x bcc )()(1 −−−

=− .  Using (2) once again, 

we have 
c

cbc
c r

bscsbsrx ))(()( 2 −−−−
=− .  So, by (3), b

c

c
c r

r
bsrx −

−
=−

2)( .  This 

would be good enough if we weren’t restricted to terms involving only ADC, but the 
problem requires that we eliminate r and rb from this equation. 
  

We do this with the modified version of (4):  
bs
bsrr

bs
bsbsrr cc

b −
−

−=
−

−−−
=

)()]()[( , or, 

by (5), 
b

bsvr cc )(2 −
− .  Hence 

)(
2)(2)( 22

bsb
rvr

b
bsv

r
bsx

c

cc
c

cc

c

c
c −

+=
−

+
−

= . □  

 
 
 

This is equivalent to 
c

ccc
c bs

CDsADsvr ))((2 −−
+ , the solution attached to the original 

sangaku problem, because, squaring Heron’s Formula, rc
2sc = ))()(( bsCDsADs ccc −−− . 
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 PROBLEM 17: Triangle ABC has incircle (I), to which (O) through B and C is internally 
tangent. Circle (P) is tangent to AB and AC and externally tangent to (O). Circle (Q) is 
internally tangent to (O) and tangent to BC at its midpoint M. If r is the inradius of ABC, 
show that r2 is 4 times the product of the radii of (P) and (Q).22  
 
SOLUTION 17 (JMU): Circle (Q) gives the figure a pleasing balance, but all that matters is 
its diameter d.  We must prove that r2 = 2drp, where rp is the radius of (P). 
 

Our first task is to prove that (O) is tangent to 
both (I) and (P) if and only if one of their 
intangents is parallel to BC, which requires some 
care. 
 
Consider (P) with P on anywhere in the segment 
AI. Since the two right triangles formed by  
AI, the two intangents, and radii of (I) are 
congruent, we see that DE, FG, and AI are 
concurrent in X, AXE = AXG, AEX ≅ AGX,  and 
ADE ≅ AFG. The equal vertical angles EXF and 
GXD have measure AGF – ADE = AED – AFG 

(an exterior angle of a triangle is the sum of the two opposite interior angles).  Hence, 
Consequently if angles AFG = ABC and AGF = ACB, then FG || BC and ACB – ADE = 
AED – ABC. But since ADE < ACB and AED > ABC, this equation holds for the figure 
only if ADE = ABC and AED = ACB. This proves  
 
Lemma: FG (DE) is parallel to BC if and only if 
DE (FG) is its antiparallel in triangle ABC. 
 
Now let M be the midpoint of BC, and consider 
the coaxial system Г of circles with centers on the 
perpendicular bisector of BC. The typical circle 
cuts AB and AC in two points that, together with B 
and C, form a cyclic quadrilateral. If FG || BC, 
then BCDE is one of these because, in any cyclic 
quadrilateral, an exterior angle equals to interior 
angle at the non-adjacent vertex, and we have just 
shown that ADE = ABC and AEG = ACB.  

                                                 
22 Fukagawa & Pedhoe 1989, 2.4.2. 
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DE touches (P) and (I) in two distinct points. 
Because all chords cut off by circles in Г are 
parallel to DE, the circle (O) in Г that passes 
through D or E must also pass through the other.  
So by the lemma, there is a circle (O) through B 
and C tangent to (I) internally and to (P) 
externally, as specified in the problem, if and 
only if one of their intangents (viz. FG) is parallel 
to BC.   
 
Since AFG ~ ABC, the rest is easy:  let H be the 

point on AB touched by (I).  AH = s – a, where s is the semiperimeter of ABC.  Since (I) 
is the excircle of AFG, AH is also the semiperimeter of AFG.  Hence rp/r = (s – a)/s.  
Therefore 2drp = 2dr(s – a)/s. If 2dr(s – a)/s = r2, then 2d(s – a) = rs = area ABC.  This is 
true if and only if 2d is the radius of the excircle touching BC.    
 
Since excircle (S) belongs to Σ, point T, where AJ cuts BC, is its contact point on BC. AI 
is concurrent with the bisectors of the exterior angles at B and C in S, and ST ⊥ BC just as  
LJ ⊥ BC.  Therefore, drawing parallels to BC through N and S, we get rectangles LTUV, 
LTSW, and SUVW.  MN = d = TU = LV but we don’t yet know the length of US = VW.  
However, BT = LC = s – c; therefore MT = ML.  Hence LMN ≅ NUS:  N lies on the 
diagonal of LTSW, and US = VW = d.  □ 
 
Incidentally, K, L, and N are collinear 
because (I) is inscribed in the circular 
segment of (O)  bounded by arc BKC and 
chord BC.     
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COROLLARY23: In the case of two triangles, ABC 
and BCD, if the radii of the two circles tangent to 
BC are r1 and r2 and the radii of the two small 
circles at A and D are r1´ and r2´, then r1r2 = 
(r1´r2´/2BC)2. This is the result stated for 
Fukagawa & Pedhoe’s problem 2.5.5.  For if the 
diameter perpendicular to BC measures d1 above 
BC and d2 below, 2d1r1 = r1´2 and 2d2r2 = r2´2. 
Multiply these equations together, noting that 
d1d2 = (BC/2)2. □ 
 
 

                                                 
23 Fukagawa & Pedhoe 1989, 2.5.5. 
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