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Abstract. The density of a (point) lattice sphere packing in n dimensions is the volume of a sphere in
Rn divided by the volume of a fundamental region of the (point) lattice. We will give examples of packings
where the centers of the spheres are points on the Zn, An, and Dn lattices, calculate their densities, center
densities, and covering radii, and state the densest known lattice packings in 1 through 4 dimensions. We
will then explain how the Z4 and D8 packings have enough room for a second copy of the respective packing
to be placed next to the first one without any sphere intersections, resulting in lattice packings with twice
the densities of the originals. In addition, we will mention Rogers’s upper bound and Minkowski’s lower
bound regarding sphere packing densities, and also prove Mordell’s inequality.

1 Sphere packings
Note. Unless otherwise noted, information is from [Conway and Sloane]. All decimal numbers will be rounded
to 4 decimal places.

1.1 Definitions and notes
The volume of a unit n-dimensional sphere will be denoted by Vn.

Definition.

• A (point) lattice in Rn is a discrete subgroup of Rn under addition containing the origin [MathWorld,
“Point lattice”].

• A fundamental region of L is a subset E of Rn that satisfies E+L = Rn and (E + l1)∩ (E + l2) = ∅
for any l1, l2 ∈ L, l1 6= l2.

Example. For a lattice L in Rn, there exist n vectors
v1 = (v11, . . . , v1m)

...
vn = (vn1, . . . , vnm)

in Rm, where m ≥ n, such

that for any x ∈ L, x =
∑n
i=1 civi where ci ∈ Z. The region {a1v1 + · · ·+ anvn : 0 ≤ ai < 1}. In this

talk the only fundamental regions that will be discussed are of this type.

• M =

v1

...
vn

 is called the generator matrix for L.

• The Gram matrix A is defined as A = MMT.

• The determinant of a lattice L is detL = det A.

If M is square, detL = (det M)
2. detL can be considered to be square of the volume of the fundamental

region, regardless of the particular region used.
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• The density ∆ of a lattice sphere packing is

∆ =
Vnr

n

Volume of the fundamental region
,

where r is the radius of each sphere.

In other words, ∆ = Vnr
n

√
detL

. For a lattice with Gram matrix A, the definition can be rewritten as
∆ = Vnr

n
√
detA

. We also define ∆n to be the maximal density of any lattice sphere packing in Rn.

• The center density δ of a sphere packing is

δ =
∆

Vn
,

In other words, δ = rn√
detA

for lattices. We also define δn to be the maximal center density of any
lattice sphere packing in Rn.

• A deep hole of a lattice L is a point x ∈ Rn such that dist (x, L) = maxy∈Rn {y, L}.

• The covering radius R of a lattice L is half the distance between a point of L and its nearest deep
hole.

1.2 Various lattices
“∼=” denotes the equivalence of two lattices. Two lattices are equivalent if one can be transformed into
the other using scaling, rotations, and/or reflections. More precisely, L and L′ are two equivalent lattices if
and only if their generator matrices M and M′ satisfy M′ = cUMB, where c is a nonzero constant, U has
integer entries and det U ∈ {−1, 1}, and B is an orthogonal matrix with real entries.
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1.2.1 The cubic lattices Zn

Lattice Zn

Definition {(x1, . . . , xn) ∈ Zn}, n ≥ 1

Basis vectors

v1 = (1, 0, 0, . . . , 0, 0)
v2 = (0, 1, 0, . . . , 0, 0)

...
vn = (0, 0, 0, . . . , 0, 1)

Generator
matrix

MZn =

1
. . .

1


n×n

Gram matrix AZn =

1
. . .

1


n×n

Volume of
fundamental

region

√
det AZn = 1

Radius of sphere r = 1
2

Center density δ =
(
1
2

)n
Covering radius R = 1

2

√
n

Dimension 1 2 3 4 5 6 7 8 · · · 24
Density ∆ 1 0.7854 0.5236 0.3084 0.1645 0.0807 0.0369 0.0159 · · · 1.1501 · 10−10

Densities calculated from [MathWorld, “Hypersphere”].
Sphere packings from the Z2 and Z3 lattices can be seen in [Figure 1] and [Figure 3].
In n dimensions, consider a cube of side length 2 surrounding a cube of spheres (each of radius 1

2 ) such
that the cube just touches all the spheres. Draw a sphere centered at the center of the cube with the
largest possible radius such that it does not intersect the other spheres. The radius of this center sphere is
rn,center = 1

2

(
2
√
n− 2

(
1
2

√
n+ 1

2

))
= 1

2

√
n − 1

2 . (The covering radius is simply this value plus the radius
of a lattice sphere.) For n = 2 and n = 3, one gets r2,center ≈ 0.2071 and r3,center ≈ 0.3660, both less
than 0.5. However, r4,center = 0.5 and r9,center = 1, which means that in 9 dimensions, the center sphere
will touch the sides of the surrounding cube! Since {rn,center}n∈N is monotone increasing and unbounded as
n → ∞, rn,center > 1 in dimensions 10 and above, which results in parts of the sphere protruding from the
surrounding cube. The specific case n = 4 will be discussed later.
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1.2.2 The lattices An

Lattice An

Definition
{

(x0, x1, . . . , xn) ∈ Zn+1 : x0 + x1 + · · ·+ xn = 0
}
, n ≥ 1

Basis vectors

v1 = (−1, 1, 0, 0, . . . , 0, 0, 0)
v2 = (0,−1, 1, 0, . . . , 0, 0, 0)

...
vn = (0, 0, 0, 0, . . . , 0,−1, 1)

Generator
matrix

MAn =


−1 1

−1 1
. . . . . .

−1 1


n×(n+1)

Gram matrix AAn =



2 −1
−1 2 −1

−1
. . . . . .
. . . 2 −1

−1 2


n×n

Volume of
fundamental

region

√
det AAn =

√
n+ 1

Radius of sphere r = 1√
2

Center density δ =

(
1√
2

)n
√
n+1

Covering radius R = 1√
2

√
2bn+1

2 c(n+1−bn+1
2 c)

n+1

Dimension 1 2 3 4 5 6 7 8 · · · 24
Density ∆ 1 0.9069 0.7405 0.5517 0.3799 0.2442 0.1476 0.0846 · · · 9.4217 · 10−8

A2 is the hexagonal lattice which gives the densest possible circle packing [Figure 2] and [Figure 4].
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1.2.3 The checkerboard lattices Dn

Lattice Dn

Definition {(x1, . . . , xn) ∈ Zn : x1 + · · ·+ xn is even}, n ≥ 3

Basis vectors

v1 = (−1,−1, 0, 0, . . . , 0, 0, 0)
v2 = (1,−1, 0, 0, . . . , 0, 0, 0)
v3 = (0, 1,−1, 0, . . . , 0, 0, 0)

...
vn = (0, 0, 0, 0, . . . , 0, 1,−1)

Generator
matrix

MDn =


−1 −1
1 −1

1 −1
. . . . . .

1 −1


n×n

Gram matrix ADn =



2 0 −1
0 2 −1
−1 −1 2 −1

−1 2 −1

−1 2
. . .

. . . . . . −1
−1 2


n×n

Volume of
fundamental

region

√
det ADn = 2

Radius of sphere 1√
2

Center density δ
(

1√
2

)n
2

Covering radius R =

{
1 n = 3
1√
2

√
n
2 n ≥ 4

Dimension 1 2 3 4 5 6 7 8 · · · 24
Density ∆ — — 0.7405 0.6169 0.4653 0.3230 0.2088 0.1268 · · · 2.3554 · 10−7

The D3 lattice is known as the face-centered cubic lattice. It can be seen in [Figure 5].
As discussed earlier, the covering radius of Z4 is 1, which allows for another copy of Z4 to fit in the

deep holes in the lattice without modifying the existing lattice or the sphere radius. In precise terms, this
configuration is the set

(
Z4
)+

:= Z4 ∪
(
Z4 +

(
1
2 ,

1
2 ,

1
2 ,

1
2

))
[Weaire and Aste]. Since

(
Z4
)+ consists of two

copies of Z4 in the same space, it has double the density of Z4, in other words 0.6169.
(
Z4
)+ is in fact

equivalent to D4. It is also true that D+
4 := D4 ∪

(
D4 +

(
1
2 ,

1
2 ,

1
2 ,

1
2

)) ∼= Z4, although this time the sphere
radius changes. In addition, D+

n := Dn ∪
(
Dn +

(
1
2 , . . . ,

1
2

))
is a lattice iff n is even. Note that when n = 8,

R =
√

2, so one can fit in another copy of D8 into the deep holes of the existing copy of D8 without modifying
it. This lattice D+

8 is known as the E8 lattice.

Theorem. (Gauss) D3 is the densest lattice packing in 3 dimensions. This lattice is unique up to reflections
and rotations.

Proof. See [Zong].
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1.3 Some theorems
1.3.1 Sphere packing density bounds

Theorem. (Rogers’s upper bound) Consider a regular n-dimensional simplex of side length 2 in Rn. Draw
n+1 n-dimensional spheres of unit radius, each centered at a vertex of the simplex. Let σn be the proportion
of the simplex that the interiors of the spheres fill. Then the density of any sphere packing in Rn satisfies

∆ ≤ σn .

This bound coincides with the hexagonal packing in n = 2.

Theorem. (Minkowski) In Rn, lattices of density

∆ ≥ ζ (n)

2n−1

exist, where ζ (n) is the Riemann zeta function, ζ (n) =
∑∞
k=1

1
kn .

The general form of this theorem, valid for centrally symmetric convex bodies, is called the Minkowski-
Hlawka Theorem [Zong]. The best known packing densities in some dimensions are shown in the following
table.

Dimension 2 3 4 5 6 7 8 · · · 24
Upper bound

(Rogers)
0.9069 0.7796 0.6478 0.5257 0.4192 0.3298 0.2568 · · · 0.0025

Best known A2 D3
∼= A3 D4 Λ5

∼= D5 · · · Leech
lattice packing 0.9069 0.7405 0.6169 0.4653 0.3730 0.2953 0.2537 0.0019
Lower bound
(Minkowski)

0.8220 0.3005 0.1353 0.0648 0.0318 0.0158 0.0078 · · · 1.1921 · 10−7

Zn 0.7854 0.5253 0.3084 0.1645 0.0807 0.0369 0.0159 · · · 1.1501 · 10−10

The densest known lattice packing in 24 dimensions is called the Leech lattice. It is 10 million times as
dense as Z24 ! Lastly, we have an inequality that places an upper bound on the density of a lattice in Rn
given the highest possible density of any lattice in Rn−1.

Definition. For a lattice L, the minimal norm µ of L is

µ = min
x∈L,x6=0

{x · x} .

Claim. For a lattice L, the following equation holds: δ =
(
µ
4

)n
2 1√

detL
.

Proof. Since the radius of the sphere is equal to half the distance between the origin and the closest nonzero

point in L, δ = rn√
detL

=

(√
µ

2

)n
√
detL

=
(
µ
4

)n
2 1√

detL
.

Definition. For a lattice L, the dual lattice L∗ is defined as

L∗ = {x ∈ Rn : x · y ∈ Z for all y ∈ Λ} .

Since the Gram matrix of L∗ is the inverse of the Gram matrix of L, detL∗ = (detL)
−1.

Theorem. Let Ln be a lattice in Rn (not necessarily integral), and let S be a k-dimensional subspace of Rn.
Let Ek = Ln ∩ S and Fn−k = L∗n ∩ S⊥. Then detF = detE

detLn
.
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Proof. Let {e1, . . . , en} be an orthonormal basis for Rn, where {e1, . . . , ek} is a basis for S and {ek+1, . . . , en}
is a basis for S⊥. There exists an integral basis {v1, . . . ,vn} for L such that {v1, . . . ,vk} is an integral
basis for Ek. Let {w1, . . . ,wn} be the dual basis, where vi · wj = δij . Then {w1, . . . ,wn} is an integral

basis for L∗n and {wk+1, . . . ,wn} is an integral basis for Fn−k. Then there’s a matrix M =

(
A 0
B C

)
sov1

...
vn

 = M

e1

...
en

 and

w1

...
wn

 =
(
M−1)T

e1

...
en

. Now detLn = (det A)
2

(det C)
2, detE = (det A)

2, and

detF = (det C)
−2.

Corollary. (Mordell’s inequality)

δn−1 ≥
1

2
δ
n−2
n

n .

Proof. Let Ln be an optimal lattice in n dimensions, so δ (Ln) = δn, and choose the scaling such that
detLn = 1. Then detL∗n = 1, which implies that δ (L∗n) ≤ δ (Ln) and µ (L∗n) ≤ µ (Ln). Then by the previous
theorem, µ (L∗n) = the determinant of the densest 1-dimensional section of L∗n = the determinant of the

densest (n− 1)-dimensional section of Ln. Now using the above claim, δn−1 ≥
(
µ(Ln−1)

4

)n−1
2 1√

detLn−1

and

δn =
(
µ(Ln)

4

)n
2

, so

δn−1 ≥
(
µ (Ln−1)

4

)n−1
2 1√

detLn−1

≥
(
µ (Ln)

4

)n−1
2 1√

µ (Ln)

=
1

2

(
µ (Ln)

4

)n−1
2
(

4

µ (Ln)

)− 1
2

=
1

2

(
µ (Ln)

4

)n−2
2

=
1

2

((
µ (Ln)

4

)n
2

)n−2
n

=
1

2
δ
n−2
n

n .

Example. Recall that the center density of D3 is δ (D3) = 1
4
√
2
. Since D3 is the optimal packing in R3, we

have δ3 = 1
4
√
2
. Then by Mordell’s inequality, δ4 ≤ (2δ3)

4
4−2 = 1

8 . Note that δ (D4) = 1
8 , so D4 is optimal in

R4.
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2 Figures
All of these figures were created by the author of these notes.

[Figure 1] [Figure 2]

[Figure 3]

[Figure 4] [Figure 5]
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