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Why is Factoring Important?

The security of some of the most commonly used encryption schemes such
as the RSA encryption scheme is proportional to the difficulty of factoring
large integers quickly. Consequently, if you can create a ”fast” algorithm for
factoring integers, then the RSA encryption scheme will no longer be secure.
Alternatively, if you can determine a lower bound for the run time of any integer
factoring algorithm, then you will have proven a lower bound on the security
of the RSA encryption scheme.
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Determining the “speed” of an algorithm.

Given an integer factoring algorithm A , we say that A runs in
(1) exponential time if there exists positive real numbers C,D, such that

any integer N can be factored by A in at most CND steps. We note
that this running time is exponential with respect to the number of digits
of N , not N itself.

(2) sub-exponential time if A runs (asymptotically) faster than any ex-
ponential time algorithm.

(3) polynomial time if there exists positive real numbers C,D, such that
any integer N can be factored by A in at most C(log(N))D steps.

We note that the naive factoring method runs in at most C
√
N(log(N))2 steps.
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Why is the Continued Fraction Factoring Method
Important?

The Continued Fraction Factoring Method was used by John Brillhart and
Michael Morrison on September 13, 1970, in order to discover that

2128 + 1 = 59649589127497217 · 5704689200685129054721.

In particular, this was the first integer factoring algorithm with a sub-exponential
running time. It was heuristically (hand-wavingly) shown in 1979 by Marvin
C. Wunderlich that this algorithm factors an integer N in at most

Cexp(
√

3log(N)log(log(N))) = CN

√
3
log(log(N))

log(N)

steps, “most” of the time.
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A Good Idea For Factoring Part 1

If we want to factor an integer N , and we have 2 distinct integers x and y for
which x2 ≡ y2 (mod N), then N divides x2 − y2 = (x− y)(x + y). This tells
us that there is a chance that gcd(x − y,N) 6= 1 or gcd(x + y,N) 6= 1. In
particular, if we find many pairs of integers {(xn, yn)}Kn=1 for which x2n ≡ y2n
(mod N), then there is a high chance that a factor of N can be obtained by
computing gcd(xn − yn, N) and gcd(xn + yn, N) for all 1 ≤ n ≤ k. We now
need a method of generating our good pairs of integers.
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A Good Idea For Factoring Part 2

Defintion: Given B,N ∈ N, we say that N is B-smooth, if every prime
factor of N is smaller than B.

Let π(N) denote the number of prime numbers smaller than or equal to N ,
and let K = π(B) + 1. Now suppose that we have a sequence of integers
{xn}Kn=1, such that x2n ≡ yn (mod N), and yn is B-smooth. Then through the
use of Gaussian elimination over the field F2, we can find A ⊆ [1, K], such that∏

n∈A yn is a perfect square denoted by w2. We have now obtained the good
pair (

∏
n∈A xn, w).

We will now see an example of this procedure from [2].
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A Good Idea For Factoring Part 3

Suppose that we want to factor 914387. We note that

18692 ≡ 750000 (mod 914387) and 750000 = 24 · 31 · 56 · 110

19092 ≡ 901120 (mod 914387) and 901120 = 214 · 30 · 51 · 111

33872 ≡ 499125 (mod 914387) and 499125 = 20 · 31 · 53 · 113

We want to know if we can multiply 2 or 3 of the numbers from {750000, 901120, 499125}
to obtain a perfect square. Since being a perfect square depends only on the
parity of the prime factors, we see that this amount to the following matrix
equation over F2.
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
4 14 0
1 0 1
6 1 3
0 1 3

 ·
a1a2
a3

 =


0 0 0
1 0 1
0 1 1
0 1 1

 ·
a1a2
a3

 =


0
0
0
0

 ,
which is solved by a1 = a2 = a3 = 1, i.e.,

750000 · 901120 · 499125 = 24+14+0 · 31+0+1 · 56+1+3 · 110+1+3 = 218 · 32 · 510 · 114

= (214 · 31 · 55 · 112)2 = 5808000002.

Lastly, we note that

1869·1909·3387 ≡ 9835 (mod 914387) and 580800000 ≡ 164255 (mod 914387)
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which lets us see that

gcd(914387, 164255−9835) = gcd(914387, 154420) = 1103⇒ 914387 = 1103·829
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A Good Idea For Factoring Part 4

The Continued Fraction Factoring Method, the Quadratic Sieve (C. Pomerance
1990), and the General Number Field Sieve are 3 different factoring algorithms
that do this. Currently (June 2018), the General Number Field Sieve is the
fastest known integer factoring algorithm for large integers. It was heuristically
shown that the General Number Field Sieve can factor an integer N in at most

Cexp((
64

9
)
1
3(log(N))

1
3(log(log(N)))

2
3) = CN

(649 )
1
3 (

log(log(N))
log(N)

)
2
3

steps. Integers smaller than 10100 tend to be factored more quickly by the
Quadratic Sieve, and numbers larger than 10130 tend to be factored more quickly
by the General Number Field Sieve. The Quadratic Sieve has the “same”
asymptotic run time as the Continued Fraction Factoring Algorithm, but ap-
pears to be faster in practice, as The Continued Fraction Factoring Method
seems to only factor numbers of the order 1050.
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A Refresher on (simple) Continued Fractions

For any θ ∈ R+ \ Q, there exists a unique sequence of non-negative integers
{an}∞n=0 for which

θ = a0 +
1

a1 + 1
a2+

1

a3+
1

...

.

Furthermore, we will use the notation

Pn
Qn

= [a0, a1, · · · , an] = a0 +
1

a1 + 1
a2+

1

a3+
1

...+ 1
an

,

which allows us to rigorously define the infinite continued fraction expansion as
a limit of the partial expansions.
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In particular,

|θ − Pn
Qn
| < 1

Q2
n

⇒ θ = lim
n→∞

Pn
Qn
.

To calculate the sequence {an}∞n=0, we use induction with θ0 = θ, a0 = bθ0c,
and

(θn+1, an+1) = (
1

θn − an
, b 1

θn − an
c).

Furthermore, we may calculate the sequence {(Pn, Qn)}∞n=−1 by (P−1, Q−1) =
(1, 0), (P0, Q0) = (a0, 1), and

(Pn+1, Qn+1) = (an+1Pn + Pn−1, anQn + Qn−1).
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The Continued Fraction Expansion of
√
N

Let τ = −U+
√
N

2V ∈ [0, 1], with N a non-square, V > 0, 4V |N − U 2, and

|U | <
√
N . We note that

1

τ
=

2V (U +
√
N)

N − U 2
=
U +
√
N

2V ′
,

where V ′ = N−U2

4V > 0. We now see that

τ =
−U +

√
N

2V
=

1

b1τ c + −U ′+
√
N

2V ′

=
1

b1τ c + τ ′
,

where −U ′ = U − 2b1τ cV
′, and τ ′ = −U ′+

√
N

2V ′ ∈ [0, 1).
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Since 4V V ′ = N − U 2 ≡ N − U ′2 (mod 4V ′), we see that 4V ′|N − U ′2,
and |U ′| <

√
N . This is significant, because this shows us that the continued

fraction expansion of
√
N can be computed precisely without any worries of

the accumulation of rounding errors at each step.
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The Continued Fraction Factoring Method

Suppose that we want to factor the non-square integer N . Let us compute the
partial continued fractions expansions {(Pn, Qn)}∞n=1 of

√
N (or

√
kN). We

note that

|P 2
n −NQ2

n| = |Pn + Qn

√
N | · |Pn −Qn

√
N | = Q2

n|
Pn
Qn

+
√
N | · |Pn

Qn
−
√
N |

< |Pn
Qn

+
√
N | < 2

√
N + 1.

Since tn = P 2
n −NQ2

n is “small”, it has a good chance of being B-smooth, and
tn ≡ P 2

n (mod N), so the continued fraction expansion of
√
N (and

√
kN) lets

us generate our desired pairs of integers.
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A slight improvement

We note that if p is a prime that divides one of our tn, then p cannot divide
Qn since gcd(Pn, Qn) = 1, so we have that

0 ≡ tn ≡ P 2
n −NQ2

n (mod p)⇒ N ≡ (
Pn
Qn

)2 (mod p),

which shows us that the only primes p smaller than or equal to B that we need
to consider, are the primes that divide N , and the primes for which N is a
square modulo p.
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