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The Davenport constant is a combinatorial invariant of finite abelian groups which has now been fruitfully
studied for over five decades by mathematicians with diverse backgrounds and motivations. Herein we
discuss the basics of the Davenport constant, including some classical results and some of its connections to
factorization theory.

We will begin by stating all the necessary definitions and notation, recall some notions from multiplicative
ideal theory, then proceed to summarize some of the highlights of the study of the Davenport constant.

1 Preliminaries

1.1 Notation: Groups

Let G be an additively-written finite abelian group. Recall that we may write G according to its invariant
factor decomposition, that is, as a product

G = Cn1 × · · · × Cnr

where Cn denotes the cyclic group of order n and n1, . . . , nr are positive integers satisfying n1 > 1 and
n1| · · · |nr.

• |G| is the order of G.

• rank(G) = r is the rank of G (which is well-defined since the invariant decomposition is unique).

• exp(G) = nr is the exponent of G.

Each of these quantities can be thought of as a useful measure of the “size” of G, depending on the circum-
stance.

1.2 Notation: Sequences

Denote by F(G) the free abelian monoid over G. F(G) consists of all (unordered) formal words in the
elements of G, and words are multiplied by concatenation. We call the elements of F(G) sequences over G,
and the identity element ∅ is called the empty sequence (If the reader prefers, the elements of F(G) can be
thought of as multisets, with the operation of union).

Let S = g1 · · · g` ∈ F(G).

• |S| = ` is the length of S.
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• σ(S) = g1 + · · ·+ g` ∈ G is the sum of S.

• T is a subsequence of S if there is some S′ ∈ F(G) with S = TS′; we write T |S and ST−1 = S′.

• Σ(S) = {σ(T ) : T |S, T 6= ∅} is the set of subsums of S.

– S is a zero-free sequence if 0 /∈ Σ(S).

– S is a zero-sum sequence if σ(S) = 0.

– S is a minimal zero-sum sequence if σ(S) = 0 but σ(T ) 6= 0 for all proper subsequences T |S.

1.3 The Main Problem(s)

Let G be a finite abelian group. The Davenport constant of G is

D(G) = inf{` ∈ N : S ∈ F(G), |S| = `⇒ 0 ∈ Σ(S)}

A closely-related quantity which often appears in the literature is the small Davenport constant :

d(G) = sup{` ∈ N : ∃S ∈ F(G), |S| = ` and 0 /∈ Σ(S)}

d(G) is the length of a longest zero-free sequence over G, and satisfies the relation d(G)+1 = D(G). We may
observe that, if S is a zero-free sequence, then T = S(−σ(S)) is a minimal zero-sum sequence. Conversely,
if T is a minimal zero-sum sequence and g|T then S = g−1T is a zero-free sequence. This allows us to make
the more modern formulation of the Davenport constant, namely:

D(G) = sup{|S| : S ∈ F(G) is a minimal zero-sum sequence}

Problem 1.1 (Direct Davenport Problem). Given a finite abelian group G, what is the exact value of D(G)?

Problem 1.2 (Inverse Davenport Problem). If S is a longest minimal zero-sum sequence over G (of length
D(G)), what is the structure of S?

2 Motivation from Ring Theory

Before taking any steps to solve the problems posed above, we should first visit the historical motivation for
studying D(G). Harold Davenport first introduced his constant at the 1966 Conference in Group Theory
and Number Theory at The Ohio State University to help further the study of factorization in algebraic
number rings. At this point, it was well-known that a number ring D need not be a unique factorization
domain (UFD). However, D is a Dedekind domain, meaning that its nonzero fractional ideals form a group
and we can study the ideal class group Cl(D) = F (D)/Prin(D) (defined in detail below).

Let G = Cl(D). The first observation to make about the class group is that |G| = 1 exactly when D is a
PID, which implies that D is a UFD.

In 1960, Carlitz addressed the next case: |G| = 2 (see [2]). He showed that if |G| = 2 then D is a half
factorial domain (HFD), meaning that each element of D has a unique length of irreducible factorization.
That is, a given element may have several different factorizations into products of irreducible elements, but
each of these products is of the same length.

From here, the question emerges: what precise statements can be made about the factorization of elements
in D when G is any abelian group?
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2.1 Details of the Ideal Class Group

Recall that a domain D is a Dedekind domain if every ideal of D has a unique factorization into prime ideals;
that is, for any nonzero ideal I ⊆ D, there are prime ideals P1, . . . , Pk ⊆ D such that I = P1 · · ·Pk.

Let K denote the field of fractions of D. A fractional ideal of D is a D-module I ⊆ K such that dI ⊆ D for
some element d ∈ D. For a nonzero fractional ideal I, we can define I−1 = {a ∈ K : aI ⊆ D}; this is an
inverse to I in the sense that II−1 = I−1I = D.

Thus the set F (D) of nonzero fractional ideals of D forms a group. Then, letting Prin(D) denote the group
of nonzero principal ideals of D, we define the ideal class group of D by

Cl(D) = F (D)/Prin(D).

2.2 A Measure of Non-Uniqueness

For a domain D, denote by A(D) the set of irreducible elements (or atoms) of D. We mentioned above
that the order of the ideal class group indicates (for small groups, at least) that the lengths of factorizations
of elements of D are controlled in some sense. We now develop the notion of elasticity to help make this
precise.

Given a nonzero element x ∈ D, let

L(x) = {` ∈ N : ∃a1, . . . , a` ∈ A(D), x = a1 · · · a`}

be the set of (factorization) lengths of x. We define the elasticity of x to be ρ(x) = supL(x)
inf L(x) and the elasticity

of D to be
ρ(D) = sup

x 6=0
ρ(x).

Observe that ρ(D) = 1 if and only if D is a half-factorial domain.

2.3 Elasticity and the Davenport Constant

With all of this in place, we can make a formal statement which ties the unruliness of factorization in a
Dedekind domain D to the Davenport constant of Cl(D).

Theorem 2.1. Let D be a Dedekind domain which is not a UFD and let G be the ideal class group of D.

1. ρ(D) ≤ D(G)
2 (see [1, Corollary 2.3]).

2. ρ(D) = D(G)
2 if G is finite and each ideal class in G contains a prime of D (see [14, Proposition 1]).

3 Investigating the Davenport Constant

Even now, the question of determining Davenport constant of a finite abelian group remains mostly open.
However, the elementary steps toward this goal, in addition to being highly instructive, exemplify top-quality
mathematics.

3.1 Determining D(G): Early Results

We should first make sure that our goal is sensible; that is, ensure that D(G) is finite under reasonable
circumstances.
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Lemma 3.1. Let G be a finite abelian group. Then D(G) ≤ |G|.

Proof. Suppose S = g1 · · · gn is a sequence over G with n ≥ |G|. Consider the sums of the subsequences
Sk = g1 · · · gk for k = 1, . . . , n. Either σ(Sk) = 0 for some k, or else Sj = Sk for some j < k. Then
σ(gj+1 · · · gk) = σ(SkS

−1
j ) = σ(Sk)−σ(Sj) = 0. In either case, we find that there is a subsequence T |S with

σ(T ) = 0.

The next order of business is securing a reasonable general lower bound as a starting point for closing in on
the exact value of D(G) for specific classes of groups. For convenience, if G has invariant factor decomposition
G = Cn1 × · · · × Cnr , we set D∗(G) = 1 +

∑r
i=1(ni − 1).

Lemma 3.2. Let G be a finite abelian group. Then D(G) ≥ D∗(G).

Proof. To prove this, it is sufficient to construct a zero-free sequence of length D∗(G) − 1 =
∑r
i=1(ni − 1).

Writing G = Cn1
× · · · × Cnr

, let Cni
= 〈ei〉 for each i. Then set S = en1−1

1 · · · enr−1
r ; this is a zero-free

sequence of length D∗(G), so we are done.

Corollary 3.3. If G is a cyclic group of order n then D(G) = n.

Almost by accident, we have determined the Davenport constant of all cyclic groups. We proceed now to a
stunning result of J.E. Olson from 1967 which does the same for finite abelian p-groups.

Theorem 3.4 (Olson, [11]). Let p be a prime and G = Cpk1 × · · · × Cpkr be a finite abelian p-group. Then
D(G) = D∗(G).

Proof. Let S = g1 · · · gn be a sequence with n ≥ D∗(G). We will consider the group ring Z[G] = Z[{Xg :
g ∈ G}]. Specifically, consider the element P =

∏n
i=1(1−Xgi).

First, we examine P from an algebraic viewpoint; our goal is to decompose P in terms of the elements Xei ,
where ei generates the ith factor of G. To this end, Observe that

1−Xa+b = (1−Xa) +Xa(1−Xb)

for any group elements a, b ∈ G. Iteratively rewriting elements in this way, we can express

P =
∑
α

hαPα,

where the hα are some elements of G and Pα has the form

Pα = (1−Xe1)f1 · · · (1−Xer )fr

with fi nonnegative integers satisfying f1 + · · ·+ fr = n.

Since n >
∑r
i=1(pki − 1), we must have f = fi ≥ pei for some i. Letting k = ki, it then follows that

(1−Xei)pk ≡ 0 mod p

This tells us that Pα ≡ 0 (mod p) for each α, so P ≡ 0 (mod p).

Now we interpret P combinatorially:

P =

n∏
i=1

(1−Xgi) =
∑
g∈G

N(S, g)Xg

where we define

N(S, g) = |{T |S : σ(T ) = g and |T | is even}| − |{T |S : σ(T ) = g and |T | is odd}|
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Now, because the Xg are linearly independent over Z/(p) ∼= Fp, P ∼= 0 implies that N(S, g) ≡ 0 for all g. In
particular, N(S, 0) ≡ 0. We know that there is at least one subsequence of S of even length with sum zero;
namely, the empty sequence. Thus, to have the above congruence, there must be another subsequence T |S
with σ(T ) = 0.

This proof leans heavily on the fact that G is a p-group, which enables us to use some elementary vector
space techniques over Fp that would otherwise be unavailable. However, the proof has no dependence on the
rank of G. We can use this to more systematically determine the Davenport constant of groups of higher
rank. First, we need a new definition and a lemma.

Definition 3.5. Let G be a finite abelian group. The eta invariant of G is

η(G) = inf{` ∈ N : |S| ≥ ` ⇒ there is T |S with σ(T ) = 0 and |T | ≤ exp(G)}

In other words, η(G) is the minimal length required for a sequence to have a short zero-sum subsequence (in
contrast to the ordinary Davenport constant, which omits the “short” requirement).

Lemma 3.6. Let G = Cp × Cp. Then η(G) = 3p − 2; that is, if S is a sequence over G of length at least
3p− 2 then S has a zero-sum subsequence of length at most p.

Proof. Let S = x1 · · ·x` be a sequence over C2
p . We identify C2

p with the subgroup of C3
p whose elements have

third coordinate equal to zero. Consider the modified sequence T = S+(0, 0, 1); that is, T = (x1, 1) · · · (x`, 1).
Then, since D(C3

p) = 3p − 2 by Theorem 3.4, we know that T has a zero subsequence U = V + (0, 0, 1).
Because the third coordinate of each element of T has order p, we know that |U | = p or 2p.

If |U | = p then V is a short zero sequence over C2
p and we need look no further. If |U | = |V | = 2p > D(C2

p),
then V has a zero sequence of length smaller than 2p; either this subsequence or its complement in V has
length smaller than p, and we are done.

With this in hand, we can determine D(G) for all groups of rank two.

Theorem 3.7 (Olson, [12]). Let G = Cm × Cn with m|n. Then D(G) = m+ n− 1 = D∗(G).

Proof. We induct on the order m of the first cyclic factor. We have already resolved the m = 1 case (in
which G is cyclic).

In the general case, let S be a sequence over G with |S| ≥ D∗(G). Suppose p is a prime divisor of m, hence a
prime divisor of n. There is a quotient map π : G→ Cp×Cp whose kernel H is isomorphic to Cm/p×Cn/p;
in other words, there is an exact sequence

0 Cm/p × Cn/p︸ ︷︷ ︸
=H

Cm × Cn Cp × Cp 0π

Consider the sequence π(S) over Cp × Cp. Observe that

|π(S)| ≥ D∗(Cm × Cn) = m+ n− 1 = p

(
m

p
+
n

p
− 3

)
+ 3p− 1

By the previous lemma, we can remove a subsequence T0 of S such that |T0| ≤ p and σ(π(T0)) = 0
(equivalently, σ(T0) ∈ H).

In fact, we can continue to remove disjoint sequences T1, . . . , T` in this manner (where ` = m
p + n

p − 3) so

that |Ti| ≤ p and σ(Ti) ∈ H for each i.

This leaves at least 2p − 1 = D(Cp × Cp) elements in S \ (T0 · · ·T`), so we can find an additional sequence
T ′|S \ (T0 · · ·T`) with σ(T ) ∈ H. We can now consider the sequence S∗ = σ(T ′)σ(T0) · · ·σ(T`) over H ≤ G;
since |S∗| = ` + 2 = m

p + n
p − 1 = D(H), S∗ has a zero sum. Thus 0 ∈ σ(S∗) ⊆ σ(S), which is what we

needed to show.
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3.2 Determining D(G): Beyond Rank 2

The theorems of Olson we have seen suggest the conjecture that D(G) = D∗(G) for all finite abelian groups
G. However, the next wave of results, due to P. van Emde Boas and P.C. Baayen, reveal that this is merely
wishful thinking. In particular:

Theorem 3.8 (Baayen, [15]). For any k ≥ 1, the group G = C4k
2 × C4k+2 has D(G) > D∗(G).

The smallest group this theorem yields is G = C4
2 ×C6. To see the zero-free sequence of length D∗(G) = 10

which demonstrates that D(G) > D∗(G), we first write G ∼= C5
2 ×C3. In these coordinates, we may express

the sequence as

S =


1
0
0
0
0
1




0
1
0
0
0
1




0
0
1
0
0
1




0
0
0
1
0
1




0
0
0
0
1
1




0
1
1
1
1
1




1
0
1
1
1
1




1
1
0
1
1
1




1
1
1
0
1
1




1
1
1
1
0
1


e1 e2 e3 e4 e5 f1 f2 f3 f4 f5

C4
2 ×C6 has order 96 and rank 5. This raises the question of whether a smaller counterexample exists. This

question was answered shortly after Baayen’s example was give, in the form of the following theorem.

Theorem 3.9 (Kruyswijk and van Emde Boas, [16]). Let n ≥ 2 and k ≥ 2 such that gcd(n, k) = 1 and let
0 ≤ ρ ≤ n− 1. If

G = C(k−1)n+ρ
n × Ckn

then

(a) D(G)−D∗(G) ≥ ρ if 1 ≤ ρ ≤ n− 1 and ρ 6≡ n mod k.

(b) D(G)−D∗(G) ≥ ρ+ 1 if ρ ≤ n− 2 and x(n− ρ+ 1) 6≡ n mod k for x = 1, . . . , n− 1.

Applying this result for n = 3, k = 2, and ρ = 0, we get:

Corollary 3.10. G = C3 × C3 × C3 × C6 satisfies D(G) > D∗(G).

With these examples, we can refine our original conjecture that D(G) = D∗(G) for all groups G.

Conjecture 3.11. If G is a finite abelian group of rank 3 then D(G) = D∗(G).

Conjecture 3.12. If n ≥ N, r ≥ 1, and G = Crn then D(G) = 1 + r(n− 1) = D∗(G).

Both of these conjectures remain open. After being ignored for several decades, these problems were revisited
in the 1990s and early 2000s by a new group of mathematicians. A. Geroldinger, W.D. Gao, and many others
with interests in factorization theory or combinatorics lent fresh eyes to zero-sum problems of the flavor of
Problem 1.1 (See, for example, [9, 10, 5]) This led to several new results, new techniques, and a renewed
interest in algebraic approaches and applications for combinatorial problems on groups.

In the mid 2000s, the focus shifted from determining D(G) for groups G of high rank to determining the
exact structure of minimal zero-sum sequences (as in Problem 1.2). This problem was solved completely
for groups of rank 2 in a series of papers by A. Geroldinger, W.D. Gao, W. Schmid, C. Reiher, and others
[7, 13, 6].

The factorization theory community remains engaged in employing combinatorial viewpoints to better un-
derstand various aspects of factorization. The survey [8] gives a friendly introduction to some ways in which
researchers are trying to do this.
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