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1 Introduction to Approximation by Rationals

1.1 Dirichlet’s Approximation Theorem (c. 1840)

For any real number α, there are infinitely many p, q ∈ Z such that:∣∣∣∣α− p

q

∣∣∣∣ < 1

q2

meaning that there are infinitely many rational approximations which are good
with respect to how finely they divide R or how large their denominator is.

1.2 Hurwitz’s Approximation Theorem (1891)

For any real number α, there are infinitely many p, q ∈ Z such that:∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

This
√

5 is actually the best constant we can put at this location, because for
any greater constant on the denominator, the statement will no longer be true

for the golden ratio, φ = 1+
√

5
2 .

1.3 Diophantine Approximation of Algebraics

Many people started to investigate the diophantine approximation on algebraic
irrationals. This began with Liouville who showed that for an irrational alge-
braic α of degree d, there is a constant C > 0 where for all p

q ∈ Q

C

qd
<

∣∣∣∣α− p

q

∣∣∣∣
This result states that an algebraic of degree d can not be well approximated
to any degree greater than d.
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Below is listed a series of results of the same flavor ultimately leading to
Roth’s Theorem.

Author Date Order of Approximation

Liouville 1844 ≤ d
Thue 1909 ≤ d/2 + 1

Seigel 1921 ≤ 2
√
d

Dyson 1947 ≤
√

2d
Roth 1955 ≤ 2

Roth’s Theorem on Diophantine Approximation can also be read: Let α ∈ R
and ε > 0 then if there are infinitely many p

q ∈ Q where∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+ε

then α must be a transcendental number.

I’ll also note here that a real number α is called badly approximable if there

exists a constant c > 0 where
∣∣∣α− p

q

∣∣∣ > c
q2 for all p

q ∈ Q \ {α}. This occurs if

and only if the continued fraction coefficients are bounded.

2 Defining the Spectra

2.1 The Lagrange Spectrum

Let α ∈ R. Consider L > 0 such that∣∣∣∣α− p

q

∣∣∣∣ < 1

Lq2

holds for infinitely many p
q ∈ Q. We define L(α) to be sup(L) over all L satis-

fying this inequality and call it the Lagrange number of α.
L = {L(α) : α ∈ R \Q} is called the Lagrange spectrum.

Suppose α = [a0; a1, a2, a3, ...] = [a0; a1, ..., an, αn+1], then∣∣∣∣α− pn
qn

∣∣∣∣ =
1

qn(αn+1qn + qn−1)
=

1

(αn+1 + qn−1

qn
)q2
n

Set λn(α) := αn+1 + qn−1

qn
= [an+1, an+2, ...] + [0, an, ..., a1]

Hence we have that
L(α) = lim

n→∞
supλn(α)
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2.2 The Markov Spectrum

A quadratic form is a function of the form

f(x, y) = ax2 + bxy + cy2

where a, b, c ∈ R and (x, y) ∈ Z2 and its discriminant is ∆(f) = b2 − 4ac. A
quadratic form is called indefinite if ∆(f) > 0 and definite if ∆(f) < 0. Because

f(x, y) = a(x+ b
2ay)2−∆(f)

4a y2, a definite form takes only nonnegative or nonpos-
itive values, while an indefinite form takes on both positive and negative values.
For an indefinite form f, define m(f) = inf(|f(x, y)| : f(x, y) 6= 0, (x, y) ∈ Z2)
and define

M(f) =

√
∆(f)

m(f)

The Markoff Spectrum is the set of values of M(f) over all indefinite forms f.
The Markoff Spectrum is actually also the set of values of

M(A) = supλn(A)

which is tantalizingly similar to the previous

L(A) = lim
n→∞

supλn(A)1

3 Developing Markov Numbers

3.1 Markov’s Equation

Markov’s equation is the Diophantine equation

x2
1 + x2

2 + x2
3 = 3x1x2x3

The first triples of solutions are (1,1,1), (1,1,2), (1,2,5), (1,5,13), (2,5,29), (1,13,34),
... so the set of solutions starts M = {1, 2, 5, 13, 29, 34, ...}

The triples of solutions for the Markov equation are coprime to one another
and the equation

x2
1 + x2

2 + x2
3 = kx1x2x3, k ∈ N

consequently only has solutions for k = 1 and k = 3.
All of the solutions can be found recursively through the rule m′1 = 3m2m3−m1

and can be compiled through the format of a tree.

1Here A is a doubly infinite sequence instead of a singly infinite sequence representing a
continued fraction.
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Figure 1: Markov Tree TM [1]

m2 + m2
2 + m2

3 = 3mm2m3, hence m2
2 ≡ −m2

3(modm). So m2x ≡ ±m3 has
two solutions between 0 and m, call them u and u’. Take v to be the integer
such that u2 = −1 +mv.

3.2 Markov’s Theorem

The Langrange Spectrum and the Markov Spectrum below 3 are the exact same
and are both: {√

9m2 − 4

m
: m ∈M

}
More accurately, Markov proved that there is a sequence of quadratic irrationals
with these lagrange numbers and there are a series of quadratic forms with these
markoff numbers and that for all irrationals and forms with corresponding values
below 3, there is an equivalent irrational or form with the same Lagrange or
Markov Number.

3.3 The Uniqueness Conjecture

Every Markov number appears exactly once as the maximum in a Markov triple.

Uniqueness Results:
Let m ∈ M,m ≥ 5. If x2 ≡ −1modm is uniquely solvable in (0, m/2), then m
is unique.
Every Markov number m of the form m = pk or m = 2pk with p an odd prime
is unique.

Every Markov number of the form m = 2lpk±2
3 with l = 0, 1, 2, 3 and p an odd

prime is unique.

4



3.4 The Farey Tree

It is sometimes helpful in further developing these numbers to correspond the
Markov Tree to the Farey Tree of reduced rationals in the [0,1] interval. We
can see that starting with 0

1 and 1
1 we can find all rationals in [0,1] through the

mediant operation a
b ⊕

c
d = a+c

b+d . Below, the first four rows of the Farey table
are depicted:

Figure 2: Farey Table [1]

We can use these Farey fractions to index our Markov numbers which will
currently be marginally helpful but whose implications will be more obvious in
the future.

Figure 3: Farey Tree [1]

3.5 Cohn Matrices

SL(2,Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
A matrix C =

(
a b
c d

)
∈ (2,Z) is a Cohn matrix if there is a Markov number

m ∈M such that b = m, tr(C) = a+ d = 3m
All Cohn matrices representing the starting Markov triple (1,5,2) are given for
a ∈ Z by

C 0
1

=

(
a 1

3a− a2 − 1 3− a

)
, C 1

1
=

(
2a+ 1 2

−2a2 + 4a+ 2 5− 2a

)
, C 1

2
=

(
5a+ 2 5

−5a2 + 11a+ 5 13− 5a

)
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Figure 4: Cohn Tree [1]

3.6 Cohn Words

We can treat the Cohn matrices similarly by replacing matrix multiplication by
concatenation of strings. This will result in the same triples only matrices will
be replaced by longer and longer words:

Figure 5: Word Tree [1]

We can define λ and ρ as the following members of automorphisms of the
free group F(A,B):

λ :
A→ A
B → AB

, ρ :
A→ AB
B → B

Through some work we can actually see that the set of positive automor-
phisms {λk1ρl1 ...λksρls : ki, li ≥ 0} has a 1 to 1 correspondence with Cohn
words.

Figure 6: Word Tree Automorphisms [1]
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3.7 Markov Words

We will now draw the correspondence between doubly infinite sequences and
doubly infinite words. We say A↔ 11 and B ↔ 22. We call a sequence strongly
admissable and a word strongly Markov if its Lagrange number is strictly less
than three. Through some work on infinite words(the study of Sturmian words
and admissable sequences), we can eventually reduce our infinite word to see
the following important result:

z is a strong Markov word if and only if z = ∞y∞ where y is a Cohn word.

Through some further work on Christoffel words we are able to calculate the
values on the spectra of these periodic words and determine the spectrum below
3.

Figure 7: First Lagrange Numbers [1]

4 More about the Spectra

Both the Lagrange Spectrum and the Markov Spectrum are closed sets and
L ⊂M.

If we denote P as M(A):A is a purely periodic doubly-infinite sequence and
Q as M(A):A is an eventually periodic sequence (on both sides), then L =
cl(P) and M = cl(Q).
We also know some of the gaps in the spectrum, but overall we don’t have an
entire understanding of either spectrum:
Both (

√
12,
√

13)and(
√

13, 1
22 (9
√

3+65)) are maximal gaps in the Markov spec-
trum.

4.1 Hall’s Ray[3]

In 1947, Marshall Hall Jr. proved the following sequence to show that there is
an infinite line segment contained in L and M.
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Any real number in the interval [
√

2 − 1, 4
√

2 − 4] can be written in the form
[0; b1, b2, b3, ...] + [0; c1, c2, c3, ...] with b’s and c’s 4 or below.
Any real number can be written in the form a+[0; b1, b2, b3, ...]+ [0; c1, c2, c3, ...]
with b’s and c’s 4 or below.
The Lagrange spectrum (and hence the Markov spectrum) contains (6,∞).

Take µ = 4+[0; 3, 2, 1, 1, 3, 1, 3, 1, 2, 1]+ [0; 4, 3, 2, 2, 3, 1, 3, 1, 2, 1] ≈ 4.527829566
Take ν = 4+[0; 3, 1, 3, 1, 2, 1, 1, 3, 3, 3, 1, 3, 1, 2, 1]+[0; 3, 1, 3, 1, 3, 4, 4, 4, 3, 2, 3] ≈
4.527829538
It took Freiman over 100 pages to show in 1975 that (ν, µ) is a gap in the Markov
spectrum and that [µ,∞) is contained in the Lagrange spectrum. Consequently,

µ = 4 +
253, 589, 820 + 283, 748

√
462

491, 993, 569

is labeled Freiman’s constant and is the beginning of the largest ray contained
in both the spectra.

4.2 More about the Center of the Spectra [2]

For all t ∈ R, HD(L ∩ (−∞, t)) = HD(M ∩ (−∞, t))
Moreover, d(t) := HD(L ∩ (−∞, t)) = HD(M ∩ (−∞, t)) is a continuous and
surjective function from R to [0,1].
The set of accumulation of points of L, L’, is a perfect set, meaning L” = L’
Gugu has also more recently shown that 0.353 < HD(M − L) < 0.986927.
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