
WHAT IS THE GRIGORCHUK GROUP?

JAKE HURYN

Abstract. The Grigorchuk group was first constructed in 1980 by Rostislav

Grigorchuk, defined as a set of measure-preserving maps on the unit interval.

In this talk a simpler construction in terms of binary trees will be given, and
some important properties of this group will be explored. In particular, we

study it as a negative example to a variant of the Burnside problem posed in

1902, an example of a non-linear group, and the first discovered example of a
group of intermediate growth.

1. The Infinite Binary Tree

We will denote the infinite binary tree by T . The vertex set of T is all finite
words in the alphabet {0, 1}, and two words have an edge between them if and only
if deleting the rightmost letter of one of them yields the other:

∅
0 1

00 01 10 11

...
...

Figure 1. The infinite binary tree T .

This will in fact be a rooted tree, with the root at the empty sequence, so that
any automorphism of T must fix the empty sequence.

Here are some exercises about Aut(T ), the group of automorphisms of T . In this
paper, exercises are marked with either ∗ or ∗∗ based on difficulty. Most are taken
from exercises or statements made in the referenced books.

Exercise 1. Show that the group Aut(T ) is uncountable and has a subgroup iso-
morphic to Aut(T ) × Aut(T ).∗

Exercise 2. Impose a topology on Aut(T ) to make it into a topological group home-
omorphic to the Cantor set.∗∗

Exercise 3. Find automorphisms of T of infinite order (in fact, there are non-
Abelian free subgroups of Aut(T )).∗∗

We will now define the Grigorchuk group Γ as a subgroup of Aut(T ) generated
by four automorphisms a, b, c, and d of T . First, if x ∈ {0, 1} let x denote the
opposite symbol (replacing 0 with 1 and vice versa). The automorphism a is easy:

a(x1x2 · · ·xn) = x1x2 · · ·xn
for any x1, . . . , xn ∈ {0, 1}, but the other two aren’t quite so simple. Let’s see a
picture that should make the definitions clear:
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a = b =

. . .

c =

. . .

d =

. . .

Figure 2. The automorphisms of T which generate Γ. The filled
triangles represent sub-binary trees whose internal structures are
unchanged by the automorphism.

The picture should make it obvious that all four generators of Γ have order two,
that is, a2 = b2 = c2 = d2 = 1 is the identity automorphism of T . We also see that

(1) bc = cb = d, bd = db = c, cd = dc = b.

This means that any g ∈ Γ can be expressed as a product

(2) aε1u1au2 · · · aunaε2 ,
where ε1, ε2 ∈ {0, 1} and u1, . . . , un ∈ {b, c, d}. However, such an expression isn’t
necessarily unique; you can check that adada = ada. (If you like, this means that Γ
is a proper quotient of the free product Z/2Z ∗ (Z/2Z × Z/2Z).)

We are going to use Figure 2 to intuitively justify many of the following state-
ments. However, we can also give recursive definitions for b, c, and d:

b(0x2 · · ·xn) = 0x2 · · ·xn, b(1x2 · · ·xn) = 1c(x2 · · ·xn),

c(0x2 · · ·xn) = 0x2 · · ·xn, c(1x2 · · ·xn) = 1d(x2 · · ·xn),

d(0x2 · · ·xn) = 0x2 · · ·xn, d(1x2 · · ·xn) = 1b(x2 · · ·xn).

Exercise 4. Confirm that the recursive definitions of b, c, and d indeed yield well-
defined automorphisms of T .∗

Exercise 5. Show that the subgroup 〈a, d〉 of Γ is dihedral of order 8, the subgroup
〈a, c〉 is dihedral of order 16, and the subgroup 〈a, b〉 is dihedral of order 32.∗∗

2. The General Burnside Problem

In 1902, William Burnside asked the following question, which later came to be
known as the general Burnside problem:

Question. If G is a finitely generated group all of whose elements have finite order,
is G necessarily finite?

Although the answer is “yes” given some additional assumptions, the answer
is “no” in general and it turns out that the group Γ answers this question in the
negative. (The Grigorchuk group was not the first such group discovered; Golod and
Shafarevich provided an example in 1964.) By definition, Γ is finitely generated, so
let’s show that it is also infinite.
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Theorem 6. The group Γ is infinite.

Proof. Let Γ1 denote the subgroup of Γ which satisfies g(x) = x for all g ∈ Γ1 and
x ∈ {0, 1}. That is, Γ1 are the elements of Γ which fix both the first and second rows
of T (i.e., they fix the sequences 0 and 1). It is easy to see that a word in {a, b, c, d}
represents an element of Γ1 if and only if it has an even number of occurrences of
a, and so Γ1 is generated by the elements b, c, d, aba, aca, and ada by (2).

Now define a homomorphism ϕ1 : Γ1 → Γ by

(3)
ϕ1(b) = c, ϕ1(c) = d, ϕ1(d) = b

ϕ1(aba) = a, ϕ1(aca) = a, ϕ1(ada) = 1.

This map is defined by restricting each element of Γ1 to the branch of T starting at
the sequence 1, and then applying the automorphism of this branch to the whole
tree (check this with figure 2!). This description makes it intuitively obvious that
ϕ1 is a homomorphism, and since the image of ϕ1 contains {a, b, c, d}, this map is
surjective. But Γ1 ⊂ Γ, so Γ must be infinite. ◻

So, we need now to show that every element of Γ has finite order. In fact, a
stronger statement is true: Γ is a 2-group, meaning that the order of each element
is a power of 2.

Theorem 7. For any g ∈ Γ there exists n ∈ N such that g2
n

= 1.

Proof. For each g ∈ Γ we define its length `(g) to be the length of shortest word in
the generating set {a, b, c, d} which is equal to g. We are going to induct on the
length of g; recall that we know the claim is true if `(g) ≤ 1. So suppose we are
given g ∈ Γ with ` = `(g) ≥ 2, and use equation (2) to write g = aε1u1au2 · · · aunaε2
for some ε1, ε2 ∈ {0, 1} and u1, . . . , un ∈ {b, c, d}. Let us also suppose that this is
the shortest such expression.

Suppose g has odd length. Then it must be the case that either ε1 = ε2 = 0 or
ε1 = ε2 = 1. In the latter case, g is conjugate by a to an element of Γ of shorter
length, so the inductive hypothesis applies. In the former case, equations (1) tell
us that g is again conjugate to an element of shorter length by u1 or un.

Now suppose ` is a multiple of four. By using conjugation and equations (1)
again, we can assume that g has the form

g = au1au2 · · · aun,
where u1, . . . , un ∈ {b, c, d} and n = `/2. Since n is even we know that g ∈ Γ1, as
defined in theorem 6. In this case, it is easy to see that the order of g is the least
common multiple of ϕ1(g) and ϕ0(g), where ϕ0 : Γ1 → Γ is defined analogously to ϕ1

except we look at the automorphism on the branch of T starting at the sequence 0.
Now by equations (3), ϕ1(g) must have length less than `; it is not hard to produce
the definition for ϕ0 analogous to (3) to show that the same holds for ϕ0(g). Thus
the inductive hypothesis tells us that the order of g is a power of 2.

Finally, for the case where ` is even but n is not, see exercise 8. ◻

Exercise 8. Finish the final case of theorem 7 in the following way: First, g2 ∈ Γ1.
Now ϕ0(g2) and ϕ1(g2) have length at most `. If our expression for g contains d,
then in fact both will have length at most ` − 1. If the expression of g has c, then
both ϕ0(g2) and ϕ1(g2) have expressions of length at most ` containing d, so now
look at ϕ0(ϕ0(g2)2), ϕ0(ϕ1(g2)2), ϕ1(ϕ0(g2)2), and ϕ1(ϕ1(g2)2). The last case is
similar—or, invoke exercise 5.∗
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Exercise 9. Pick up the author’s slack and make these proofs formal and explicit.∗

Thus Γ indeed solves the generalized Burnside problem. This has some fun
consequences. Most familiar examples of finitely generated groups are linear groups,
groups which are isomorphic to a group of matrices. For example, any finite group
is linear, and countable free groups are linear, and in general finitely generated
non-linear groups tend to have exotic properties.

However, one of the “additional assumptions” under which the Burnside’s ques-
tion has a positive answer is if G is a subgroup of GL(n,K) for some field K and
n ∈ N, as shown by Schur in 1911 if K has characteristic zero, and otherwise by
Kaplansky in 1972. So, we get the following as a corollary to theorems 6 and 7 and
the result of Kaplansky:

Corollary 10. For any field K and n ∈ N, if ϕ : Γ → GL(n,K) is a homomorphism
then it has finite image. In particular, Γ is not a linear group.

Another variant of Burnside’s problem asks if G is guaranteed to be finite if
there exists n ∈ N such that gn = 1 for all g ∈ G. Although if n is small the answer
is “yes” (try n = 2), it is unknown for even n = 5 and we know that for large
enough n the answer is “no”. Unfortunately, Γ does not provide any answers to
this question, since for all n ∈ N there exists g ∈ Γ satisfying g2

n

≠ 1. In fact, Γ has
a much stronger and more interesting property: any finite 2-group is isomorphic to
a subgroup of Γ.

Exercise 11. Try defining new groups similarly to how we defined Γ. What inter-
esting properties does your group have? How about groups defined using the infinite
n-ary tree, for n ≥ 3?∗∗

3. Γ as a Group of Intermediate Growth

In this section we define the concept of the growth rate of a group, the funda-
mental notion in geometric group theory, and briefly describe its relation to the
Grigorchuk group. The main claim of this section will not be proven, since the
proof would take too long to do justice, and the reader is instead referred to the
references where far more in-depth expositions can be found.

Suppose G is a group with finite generating set X ⊂ G. The (closed) ball of
radius n of G is the set BG,X(n) of all elements of G which can be expressed as a
product of n elements of X. For example, BG,X(1) = X ∪ {1}. Then the growth
function of G with respect to the generating set X is the function βG,X : N → N
defined by βG,X(n) = |BG,X(n)|. For example, it is clear that the growth function
of Z with respect to the generating set {1} is βZ,{1}(n) = 2n + 1:

→ → → → → → → → → →
0

. . . . . .

Figure 3. The Cayley graph of Z with respect to the generating
set {1}. Balls of successively larger radii are represented by the
dotted ellipses, the smallest having radius zero.
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It is easy to find examples of growth functions which are polynomials of any
integer degree and which are exponential. Additionally, every growth function of
an infinite group must be monotonically increasing and cannot grow faster than
exponentially.

Exercise 12. Prove the claims made in the previous paragraph.∗

However, the growth function is dependent on the choice of generating set. You
may wish to check that, for example, βZ,{2,3}(n) = 6n + 5. Even though a group
can have multiple growth functions, they cannot be “too” different. In particular,
every group falls into one of the following growth types:

∗ A group G is of polynomial growth if every growth function for G is asymp-
totically polynomial.

∗ A group G is of exponential growth if every growth function for G is asymp-
totically exponential.

∗ A group G is of intermediate growth if every growth function for G grows
faster than any polynomial but slower than any exponential function.

It is easy to find groups of polynomial growth of order k for every k ∈ N (take
Zn), and exercise 12 tells us that every non-Abelian free group of finite rank is of
exponential growth. In 1968 John Milnor asked the natural question of whether
intermediate groups exist at all. Grigorchuk, in 1984, showed that his group Γ
indeed is of intermediate growth. In fact, it has been shown by Laurent Bartholdi,
improving Grigorchuk’s original bounds, that every growth function for Γ grows like
en

α

for some α satisfying, approximately, 0.5157 ≤ α ≤ 0.7674. Grigorchuk went
further, constructing an uncountably infinite family of groups indexed by certain
infinite {0, 1}-sequences, all of which are of intermediate growth.
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