What is a Markoff Number?

Michael Lane

July 2, 2019

Abstract

The continued fraction expansion of a real number $\theta > 0$ yields a sequence of rational numbers $\{p_n/q_n\}$, called the convergents of the expansion, which are the “best rational approximations” of θ. In particular, p_n/q_n is closer to θ than any other rational with smaller (or equal) denominator. A Markoff number gives an explicit bound on the error $|\theta - p_n/q_n|$. We will calculate these numbers and illustrate their surprising connection to geodesics in the hyperbolic plane.

References

What is a Markoff Number?

Michael Lane

July 2, 2019
Outline

• Continued Fractions
• Basics of Hyperbolic Geometry
• Cutting and Characteristic Sequences
• Markoff’s Quadratic Form
• Diophantine Equations
Continued Fractions

• Fix $\theta > 0$. A continued fraction of θ is an expression of the form

$$\theta = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ddots}}$$

where the a_0, a_1, a_2, \ldots are positive integers.

• This can be denoted more concisely as

$$\theta = [a_0, a_1, a_2, \ldots].$$

• θ is rational if and only if its continued fraction terminates.

• Continued fractions are unique up to the ambiguity $[\ldots, 2] = [\ldots, 1,1]$.
Continued Fractions

• A *convergent* of the continued fraction for θ is a rational number $\frac{p_n}{q_n}$, where

$$\frac{p_n}{q_n} = [a_0, a_1, ..., a_n]$$

and p_n, q_n are coprime and positive for all n.
Rational Approximations

• The convergent p_n/q_n is a best rational approximation for θ in the sense that it is closer to θ than every other rational number with denominator smaller than (or equal to) q_n.

• This statement can be strengthened significantly.

• In fact, there exists c, depending on θ but not on n, such that

$$\left| \theta - \frac{p_n}{q_n} \right| < \frac{c}{q_n^2}$$

for infinitely many n.
Rational Approximations

• The number c can always be taken as $1/\sqrt{5}$.
• This bound is tight for the Golden Ratio $\phi = 1 + \frac{1}{1 + \frac{1}{1 + \ddots}} = \frac{1 + \sqrt{5}}{2} \approx 1.61803$

• We can sometimes take c to be smaller. Indeed, define $\nu(\theta) = \inf \{c : \left| \theta - \frac{p}{q} \right| < \frac{c}{q^2} \text{ for infinitely many } q \}$
Markoff Numbers

• The Markoff numbers are a sequence of reals \(\{\nu_i\} \subset \left(\frac{1}{3}, \frac{1}{\sqrt{5}} \right) \), decreasing to 1/3, such that if \(\theta > 0 \) satisfies \(\nu(\theta) > 1/3 \), then \(\nu(\theta) = \nu_i \) for some \(i \).

• The elements of \(\nu^{-1}(\nu_i) \) are called the Markoff irrationalities for \(\nu_i \).
Hyperbolic Geometry

• Hyperbolic geometry has methods for measuring distance and area in the complex plane, different from normal Euclidean geometry.
• Notably, angles are measured in the same manner in both geometries.
• Let $\mathbb{H} \subset \mathbb{C}$ denote the upper half plane, $\mathbb{H} = \{z \in \mathbb{C}: \text{Im } z > 0\}$.
• The length of a smooth curve γ in \mathbb{H} is given by
 $$\int_\gamma \frac{|dz|}{\text{Im } z} = \int_\mathbb{R} \frac{|\gamma'(t)|}{\text{Im } \gamma(t)} \, dt$$
• We can define a metric ρ on \mathbb{H} that agrees with this definition of length.
Hyperbolic Geometry

• Any curve between two fixed points of minimal (hyperbolic) length is called a \textit{geodesic}.

• Geodesics are arcs of semicircles that meet the boundary $\partial \mathbb{H}$ at right angles.
 - (Lines are also circles.)

• The boundary $\partial \mathbb{H}$ includes the real axis and the point at infinity. Vertical rays meet ∞ at right angles.
 - Think of $\partial \mathbb{H}$ also as a circle, because it is one.

\[
\int_{\gamma} \frac{|dz|}{\text{Im } z} = \int_{\mathbb{R}} \frac{|\gamma'(t)|}{\text{Im } \gamma(t)} \, dt
\]
Möbius transformations

• The Möbius or fractional linear transformations are bijections from \(\mathbb{H} \) onto \(\mathbb{H} \) of the form

\[
M(z) = \frac{az + b}{cz + d}
\]

where \(a, b, c, d \in \mathbb{R} \) and \(ad - bc = 1 \).

• Möbius transformations are all conformal automorphisms, which preserve angles in \(\mathbb{H} \).

• Möbius transformations send circles to circles.

• Mobius transformations act on \(\mathbb{H} \) isometrically; that is, for all \(M \) and \(z, w \in \mathbb{H} \)

\[
\rho(z, w) = \rho(M(z), M(w)).
\]
\textbf{SL}(2, \mathbb{R})

- Möbius transformations form a group \mathcal{M}.
- \mathcal{M} is nearly isomorphic to the matrix group

\[
\text{SL}(2, \mathbb{R}) := \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : M \text{ real and } \det M = 1 \right\}.
\]

by the map

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{az + b}{cz + d}.
\]

- The kernel of this surjection is merely $\pm I$.
\textbf{SL}(2, \mathbb{Z})

- Define the subgroup of SL(2, \mathbb{R})

\[
\text{SL}(2, \mathbb{Z}) := \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : M \text{ integral and } \det M = 1 \right\}.
\]

- Like SL(2, \mathbb{R}), the group SL(2, \mathbb{Z}) acts isometrically on \mathbb{H} by way of the corresponding Möbius transformation.
SL(2, \mathbb{Z}) and Continued Fractions

• Now that we have a little hyperbolic geometry under our belts, let us return to continued fractions.
• The matrices
 \[
 \begin{pmatrix}
 1 & 1 \\
 0 & 1
 \end{pmatrix}
 \text{ and } \begin{pmatrix}
 0 & -1 \\
 1 & 0
 \end{pmatrix}
 \]
 generate \(SL(2, \mathbb{Z}) \).
 • The proof is similar to the Euclidean algorithm for calculating GCDs, which is itself similar to the standard algorithm for calculating continued fractions.
• These matrices correspond to the Möbius transformations
 \[
 P(z) = z + 1 \quad \text{and} \quad Q(z) = -\frac{1}{z}.
 \]
SL(2, \mathbb{Z}) and Continued Fractions

\[P(z) = z + 1 \quad \text{and} \quad Q(z) = -\frac{1}{z} \]

• Let us examine the effect of these generators on continued fraction expansions.

\[P^{-a_0} [a_0, a_1, a_2, ...] = [a_1, a_2, ...]^{-1} \]

\[QP^{-a_0} [a_0, a_1, a_2, ...] = -[a_1, a_2, ...] \]

\[p^{a_1} QP^{-a_0} [a_0, a_1, a_2, ...] = -[a_2, a_3, ...]^{-1} \]

• Allowing some liberties, a continued fraction is then equivalent to the infinite word

\[P^{a_0} QP^{-a_1} QP^{a_2} \cdots \sim [a_0, a_1, a_2, ...] \]
SL(2, ℤ) and Continued Fractions

• We have just proved the following theorem:

The tails of the continued fractions of θ₁ and θ₂ coincide if and only if there exists $M \in \text{SL}(2, \mathbb{Z})$ such that $M(\theta_1) = \theta_2$.

That is to say, if $\theta_1 = [a_0, a_1, ...]$ and $\theta_2 = [b_0, b_1, ...]$, then there exist $r, N \in \mathbb{N}$ such that $a_{n+r} = b_n$ for all $n \geq N$ if and only if there exists $M \in \text{SL}(2, \mathbb{Z})$ such that $M(\theta_1) = \theta_2$.
Cutting Sequences

• We wish to formalize this philosophy of associating continued fractions with infinite words of generators of $\text{SL}(2, \mathbb{Z})$.
• This formalization is achieved by way of cutting sequences.
• In the interest of time, we must brush many details under the rug.
The $\Gamma(2)$ Lattice

• I will not define $\Gamma(2)$, because its definition is not important.
• $\Gamma(2)$ is some finite-index subgroup of $SL(2, \mathbb{Z})$
The $\Gamma(2)$ Lattice

- Do not confuse with a Euclidean lattice!
- \mathbb{H} can be partitioned into non-overlapping triangles with vertices on $\partial \mathbb{H}$.
- The triangles’ boundaries are geodesics.
- $\Gamma(2)$ acts transitively and freely on the triangles.
- These are the only salient features of $\Gamma(2)$.
- The continued fraction of $\theta > 0$ can be calculated by recording how the corresponding geodesic intersects these triangles.
The $\Gamma(2)$ Cutting Sequence

- Fix $\theta > 0$.
- Plot a geodesic.
- Record the direction of the “odd vertex out” starting from $i\mathbb{R}$.
- We get a cutting sequence $L^{a_0} R^{a_1} L^{a_2} \ldots$
The $\Gamma(2)$ Cutting Sequence

$L^{a_0} R^{a_1} L^{a_2} \ldots$

- We see $a_0 = [\theta]$
- The map
 \[S(z) = -\frac{1}{z - a_0} \in \mathcal{M} \]
preserves the lattice and the L,R labels.
- $S = QP^{-a_0}$
- D maps to D'
Characteristic Sequences

• Consider a finite word in a, b:

\[ababab^2abab^2 \]

• Notice that the a are by themselves and that the b exponents differ by at most 1.
• Such a word is called \textit{almost constant}.
• We can \textit{derive} an almost constant word to get a new word.

<table>
<thead>
<tr>
<th>Step</th>
<th>Word</th>
<th>Recoding</th>
<th>Derived Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ab^2abab^2ab</td>
<td>$ab \to a$</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>aba^2ba^2</td>
<td>$a \to a$</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ab^2</td>
<td>$ab^2 \to a$</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Sequences

- Almost constant sequences that can be derived indefinitely are called characteristic.
- This is another technique for calculating continued fractions!
- Plot a line of slope $0 < \theta < 1$
- Write an a whenever it crosses the horizontal lines, and a b for the vertical. Write ab for lattice points.
- The derived sequence is the continued fraction!
Characteristic Sequences

• Every cutting sequence of a Euclidean line is characteristic.
• Conversely, every finite characteristic sequence is the cutting sequence of a line.
• The situation for hyperbolic geodesics is a little more complicated, as we shall see.
Taking Quotients of \(\mathbb{H} \)

- We must change lattices again

\[
\begin{pmatrix}
1 & 1 \\
1 & 2
\end{pmatrix}
\quad \begin{pmatrix}
1 & 1 \\
-1 & 2
\end{pmatrix}
\]
Definitions for Geodesics in T^*

- A *simple* curve does not intersect itself.
- A *closed* curve is periodic.
- A *lift* of a curve $\tilde{\gamma}$ in T^* is any curve γ in \mathbb{H} that projects to $\tilde{\gamma}$.
- Geodesics lift to geodesics.
- If a sequence of geodesics $\{\tilde{\gamma}_n\}$ has a sequence of lifts $\{\gamma_n\}$ whose endpoints converge to x, y, then the projection $\tilde{\gamma}$ of the geodesic γ corresponding to the endpoints x, y is called the *limit* of $\{\tilde{\gamma}_n\}$.
- The collection of all limits of simple, closed geodesics is denote X.
- All geodesics of X are simple, though not necessarily closed.
Bringing it all together

A geodesic on T^* is closed and simple if and only if its cutting sequence is periodic and characteristic.

A geodesic is in X if and only if its cutting sequence is characteristic.

A geodesic is in X if and only if all of its lifts lie below the line $\text{Im } z < 3/2$.

Markoff irrationalities are the endpoints of lifts of geodesics in X.
Motivation for $\text{Im } z < 3/2$

Projection will definitely not be simple

Projection could be simple
Motivation for $\text{Im} \ z < 3/2$
Markoff’s Quadratic Form

- Determining if the $\text{Im } z < 3/2$ condition holds is equivalent to determining if the endpoints x_1, x_2 satisfy $|x_1 - x_2| < 3$.
- Choose c_0, c_1, c_2 so that the quadratic polynomial
 $$f(x) := c_2x^2 + c_1x + c_0$$
 has x_1, x_2 as roots. Denote
 $$\Delta = c_1^2 - 4c_0c_2.$$
- Notice that
 $$|x_1 - x_2| = \frac{\sqrt{\Delta}}{f(1)}.$$
Markoff’s Quadratic Form

\[|x_1 - x_2| = \frac{\sqrt{\Delta}}{f(1)} \]

• Let us define the corresponding binary quadratic form
 \[Q(x, y) = c_2 x^2 + c_1 xy + c_0 y^2 \]

• To prove that \(|x_1 - x_2| < 3\), it therefore suffices to prove that
 \[\inf_{x, y \in \mathbb{Z}^2 \setminus 0} \left(\frac{Q(x, y)}{\sqrt{\Delta}} \right) > \frac{1}{3} \]

• In fact, the infimum is \(\nu(x_1) = \nu(x_2)\)!
Diophantine Equations

• Consider the Diophantine equation
 \[x^2 + y^2 + z^2 = 3xyz \]

• The trivial solution is
 \[(1,1,1)\]

• All solutions can be derived from this solution by some application of
 \[(x, y, z) \leftrightarrow (z, x, y)\]
 \[(x, y, z) \leftrightarrow (x, 3xy - z, y)\]

• Let
 \[x_{\pm} = \frac{1}{2} + \frac{y}{xz} \pm \frac{1}{2} \sqrt{9 - \frac{4}{z^2}} \]
Diophantine Equations

• The numbers x_{\pm} are Markoff irrationalities and

$$\nu(x_+) = \nu(x_-) = \left(9 - \frac{4}{z^2}\right)^{-1/2} > \frac{1}{3}.$$
What just happened?

• We associated continued fractions with cutting sequences of geodesics in \mathbb{H}.
• We found that Markoff irrationalities are the limits of endpoints of closed, simple geodesics in T^*.
• We found that such limits can be associated to the minima of a certain binary quadratic form.
• The minima of this form can be associated to the solution of a Diophantine equation.
References

- This presentation is based primarily on C. Series’ Math Intelligencer article, *The Geometry of Markoff Numbers*, 1985.
- For a concise treatment of the basics of hyperbolic geometry, consult chapter one of *Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces*, edited by T. Bedford, M. Keane, and C. Series.