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There are actually many different zigzag theorems. We will discuss two different
zigzag theorems. We will begin with Isbell’s zigzag theorem, which is a an algebraic
result involving semigroups and dominions. Then we will also discuss zigzags be-
tween two circles, an ergodic result, which is a closure theorem, similar to Poncelet’s
porism and Steiner’s porism. We will then mention a general theorem, which has
all three closure theorems as special cases.

1. Isbell’s ZigZag theorem

We begin by presenting Isbell’s zigzag theorem.
First, recall that a monoid is a set G together with a binary operation G×G → G

that satisfies the law of associativity. Additionally, G has a unit element. We say
that H is a submonoid of a monoid G if H is itself a monoid, H is a subset of G,
and H has the same binary operation as G.

Now we define the dominion of U in S to be the set of elements s ∈ S such that
for all monoids T and for all homomorphisms h1, h2 : S → T with the property
that h1

∣∣
U

= h2

∣∣
U

, we have h1(s) = h2(s). We shall denote the dominion of U in S
by DomS(U).

We now turn to [5] for some motivation to continue. Usually, an epimorphism is
defined to be an onto homomorphism. In category theory, an epimorphism α : A →
B is defined by a cancellation property. That is, for all objections C in the category
and for all morphisms β, γ : B → C, if β ◦α = γ ◦α, then it follows that β = γ. For
monoids, every onto morphism is an epimorphism. The converse holds in groups,
but not necessarily in rings or monoids. Dominions are useful here because there is
a result which states that the inclusion map U ↪→ S is an epimorphism if and only
if DomS(U) = S. Additionally, a map α : S → T is an epimorphism if and only if
DomT (im α) = T .

Now that we have the motivation to understand dominions, we introduce the
zigzag theorem, using the notation and a sketch of the proof used in [4].

Theorem 1. Let U be a submonoid of S, a monoid with s∗ ∈ S. s∗ ∈ DomS(U) if
and only if either s∗ ∈ U or there exists a U -zigzag with value s∗. That is, we have
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Another way of seeing this factorization of s∗ can be seen in figure 1, taken from
[4]. The U -zigzag with value s∗ is equivalent to the commutativity of figure 1.

Proof. (sketch) The reverse direction is straightforward, and will left as an exercise.
For the forward direction, assume s∗ is in the dominion of U in S. Let A be

the set of all elements of S combined with a new element t, such that t2 = 1 and
1
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Figure 1. A U -zigzag with value s∗.

tut = u for all u ∈ U . Let A∗ be the set of all finite words over the alphabet A,
with ε being the empty word.

Now, there are three types of reductions that can be done on the set of words
from A∗. Refactorization occurs when s1 . . . sn ↔ s′1 . . . s′k for s1 . . . sn = s′1 . . . s′k
in S and si, s

′
j ∈ S. A right/left shift is when tu ↔ ut for u ∈ U . Finally,

a creation/deletion is the reduction ε ↔ tt. Then ↔ is almost an equivalence
relation, though it lacks transitivity (the result of a creation followed by a shift
cannot be accomplished by a single reduction). Thus, let ↔+ be the transitive
closure, making it an equivalence relation, giving us a quotient module T .

Now, define µ, ν : S → T by µ(s) = s and ν(s) = tst. By definition, for all
u ∈ U , we have µ(u) = u = tut = ν(u), so µ and ν agree on all of U . Thus, by
definition of s∗ being in the dominion of U in S, we have µ(s∗) = ν(s∗). Therefore,
s∗ ↔ ts∗t, which is equivalent to s∗t ↔ ts∗.

This will give rise to a sequence of reductions s∗t = w1 ↔ . . . ↔ wn = ts∗. Using
this, we can get a U -zigzag with value s∗. To do this, we need two observations.
The first observation is that we can track specific occurrences of t through any
reductions. The second is that if wi ↔ wi+1, for some t does not get deleted at
this step, then vi ↔ vi+1, where vi and vi+1 come from wi and wi+1 by removing
all other occurrences of t (other than the one not deleted).

Using this, we can create a sequence of new reductions that will only consist of
a single occurrence of t without the creation/deletion reduction. �

2. zigzags Between Two Circles

Before we present the zigzag theorem between two curves, we begin with some
similar results, beginning with Steiner’s Porism.

Given two circles, one inside the other, draw a circle, γ1 between the two, tangent
to each. Then construct more (distinct!) circle, each one between the two original
circles, and each one tangent to the one constructed right before it. If some γn

is also tangent to γ1, then the chain of circles is said to close and have period n.
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Additionally, for any circle γ between the two original circles, repeating the same
procedure, the nth circle will still be tangent to the first.

A picture of this process, when it closes, can be seen in figure 2.

Figure 2. This is an example of the Steiner process that closes.
There is a large circle, with a small circle inside of it. The other
circles have been constructed between and tangent to the inner
and outer circle.

A formalization of this process and the theorem which accompanies is can be
found in [6], and is as follows.

“Steiner Process. Given circles α0 and α1 with α1 inside of α0, let M be the
set of circles that are tangent to α0 and α1 and lie between them. For an arbitrary
γ1 ∈ M we take a circle γ2 ∈ M tangent to γ1, and then for any k ≥ 3 we take a
circle γk ∈ M tangent to γk−1, different from γk−2. This process has period n ≥ 2
if γn+1 = γ1.

Theorem 2. If the Steiner process is periodic for some initial circle γ1, then is
has the same period for any γ ∈ M .”

We now take a look at Poncelet’s Porism. To set this up, construct two ellipses,
one inside of the other. Then, select a starting point, D1, on the outer ellipse. From
D1, draw a line tangent to the inner ellipse and let D2 be the point of intersection on
the outer ellipse. Continue constructing new tangent lines and points of intersection
on the outer ellipse. If we have Dn+1 = D1 for some minimal n ∈ N, then the
process closes and has period n. Poncelet’s theorem states that for a fixed inner
ellipse and a fixed outer ellipse, if the process closes with period n for some starting
point D1, then the process will close with period n for any starting point D. Figure
3 illustrates an example of this.

Figure 3. An example of the Poncelet process closing for these ellipses.
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Again, we seek a formalization of this process. After applying a projective trans-
formation, we can reduce to the case where the ellipses are circles. So now we turn
to [6], which states the following.

“Poncelet Process. Given two circles α and δ, we draw through some point
D1 ∈ δ a line tangent to α that intersects δ a second times at a point D2. We draw
the second tangent to α through D2; it meets δ a second time at a point D3, and
so on. This process is periodic if Dn+1 = D1.

Theorem 3. If the Poncelet process has period n ≥ 3 and the points D1, . . . , Dn

are different, then the process has the same period for any initial point D1 ∈ δ
through which one can draw a tangent to α.”

We are now ready to move on to the theorem about zigzags between two circles.
Using [1] as a guide, Just as before, begin with two circles, Γ and Γ̃, subject to
the requirement that there exists some number x such that for every point on
either circle, there are exactly two points of the other circle distance x away. Then,
starting with some initial point z1 from one of the circles, say Γ. Then pick z̃1 ∈ Γ̃
such that |z̃1 − z1| = x. In a similar manner, pick z2 ∈ Γ and so on, with that
addition restriction that zk 6= zk−1 and z̃k 6= z̃k−1. If there exists some n such that
zn+1 = zn, then the process closes. The zigzag theorem states that the zigzag could
have started at any point and it would still close. Figure 4 shows an example of
this occurring.

Figure 4. Two circles with a zigzag between them closing after
only a couple steps.

Taking a step back, we can see some obvious similarities and some difference
between this zigzag theorem and Steiner’s porism and Poncelet’s porism. First
of all, they all deal with some sort of process that gets iterated many times. In
all cases, if that iteration is periodic, the starting position does not affect the
periodicity. Also, one method of proving this zigzag theorem uses a technique
which works for Poncelet’s Porism as well. The idea, from [1] is the find how much
zn+1 moves when z1 is moved. Recall that z1 is our initial point and zn+1(= z1)
was our n+1st point, both in Γ. It can be shown that zn+1 moves at the same rate
as z1, ie, dzn+1 = dz1, so wherever z1 moves to, zn+1 will also move to that same
location, guaranteeing that the process will close after the same number of steps.
The full proof, using differential equations, can be found in [1].

The main difference that separates the zigzag theorem from Poncelet’s Porism
and Steiner’s Porism is the fact that the zigzag theorem holds for any two circles in
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R3, still subject to its restriction. If the two circles are coplanar, this requirement
that there exist some x such that every point on either circle is distance x away from
exactly two points of the other circle can be simplified. The equivalent requirement
for the coplanar case is that the smaller circle must enclose the center of the larger
circle [1].

We now turn to [6] for a formalization. In this paper, however, there is a differ-
ence in the statement. [6] formalizes the zigzag theorem as follows.

“ Zigzag process. Given two circles σ and δ, neither of which contains the center
of the other, and given a number ρ > 0, choose some D1 ∈ δ and S1 ∈ σ such that
D1S1 = ρ. Take a point D2 ∈ δ such that D2S1 = ρ and D2 6= D1 (if it does not
exist, then D2 = D1); then take a point S2 ∈ σ such that S2D2 = ρ and S2 6= S1

(otherwise S2 = S1), and so on. The zigzag has period n if Dn+1 = D1.

Theorem 4. If the zigzag has period n ≥ 3 and all intermediate points are different,
then it has the same period for any initial points D1 ∈ δ from which one can make
the first step.”

We can easily see the main difference between the previous presentation of the
zigzag theorem and this presentation. An example of this version of the zigzag
theorem can be seen in figure 5.

Figure 5. Two circles, none of which contain the center of the
other. A zigzag between the circles is shown.

A general theorem can be found in [6]. This theorem has Steiner’s Porism, Pon-
celet’s Porism, and the zigzag theorem as special cases. This generalized theorem
uses the notation and format as presented in the processes and theorem included
above.

Csikós and Hraskó, in their paper, [2], they extend some results relating to the
zigzag theorem. Among these extensions, they discuss the zigzag theorem when the
two circles are not contained in 3 dimensions, they show that the theorem holds in
hyperbolic space, and they show the theorem holds when the curves are “ arbitrary
uniform curves of the space” as opposed to necessarily being circles. These are
some results which, as mentioned earlier, can be found in their paper, [2]. Here,
we shall discuss other results of their’s, some results in the case when dealing with
two coplanar circles.
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Csikós and Hraskó discuss how a zigzag can be described by four parameters:
xR, xr, the radii of the large and small circles, xd, the distance between the centers of
the two circles, and xρ, the length of the zig/zag. We represent this as a four-tuple,
(xR, xr, xd, xρ). For these results, assume that (xR, xr, xd, xρ) forms a configuration
such that the zigzags close after n steps. Then (xR, xr, xρ, xd) will also close after
n steps. That is, if we interchange the distance between the circles and the length
of the zig/zag, we will again have a situation where the zigzag closes after n steps.

Another result presented in [2] is that interchanging the small radius with the
length of the zig/zag, and switching the values of the larger radius and the distance
between the centers of the circles, the new arrangement will still close after some
number of steps. That is, (xd, xρ, xR, xr) will still close. If n is even, the new
configuration, it will close in n steps, while it will close in m steps, m|n, if n is odd.

They also present the result that in the situation (xa, xa, xd, xa), that is, if the
two circles have the same radius, a, and the length of the zig/zag is also a, then
any zigzag will close in 3 steps.

These results and more can be found, with more detail, in [2]. This zigzag
theorem, and other similar results presented above, are just a few of these closure
related results.
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