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1 Tetration

1.1 Introduction and Knuth’s up-arrow notation

For positive integers, the operations of multiplication and exponentiation can be looked at as repeated
addition and repeated multiplication respectively. It is possible to further this process and create an operation
that corresponds to repeated exponentiation. These operations are called hyper operations. [GD] [GR] [WH]

Hyper operation rank Name Operation Definition
1 Addition a+ b a+ 1 + · · ·+ 1

| {z }

b

2 Multiplication a · b a+ · · ·+ a

| {z }

b

3 Exponentiation a

b

, a " b a · · · · · a
| {z }

b

4 Tetration b

a, a "" b a " (a " (· · · (a " a) · · · ))
| {z }

b occurrences of a

5 Pentation
b

a, a """ b a "" (a "" (· · · (a "" a) · · · ))
| {z }

b occurrences of a

6 Hexation a

b

, a """" b a """ (a """ (· · · (a """ a) · · · ))
| {z }

b occurrences of a

.

.

.

.

.

.

.

.

.

.

.

.

The names of “tetration,” “pentation,” etc. are from Goodstein (1947). The arrows are part of Knuth’s
up-arrow notation, created by Donald Knuth in 1976 [WK] [KD], which is defined as in the table. The
general rule for this notation is that each operator is defined by the one below it by the following equation:

a " · · · "
| {z }

n

b = a " · · · "
| {z }

n�1

0

@

a " · · · "
| {z }

n�1

0

@· · ·

0

@

a " · · · "
| {z }

n�1

a

1

A · · ·

1

A

1

A

| {z }

b occurrences of a

.

The shorthand "n is used to represent " · · · "
| {z }

n

. In the expression a "n b, a is called the base, b is called the

hyperexponent, and n is called the rank [WH]. Note that by definition, x "n 1 = 1 for all n 2 N (also true
for multiplication) and 2 "n 2 = 2 "n�1

2 = · · · = 4 for all n 2 N (also true for addition and multiplication).
Also, like exponentiation, tetration is not commutative. An immediate consequence of the definition of
tetration is that b+1

a = a

(

b

a

) for b � 1.

Example 1.1. 3

2 = 2

2

2

= 16 6= 27 = 3

3

=

2

3.

As one might expect from comparing addition, multiplication, and exponentiation, tetration of even
small numbers can result in very large numbers. Here are two tables of values formed by hyper operations
displayed using notation no “higher” than exponentiation (and braces) to give an idea of their sizes. Graphs
of y = x+ 2, y = x · 2, y = x

2, and y =

2

x are given in Figure 1.
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rank n Name 2 "n�2

2 3 "n�2

2 4 "n�2

2 5 "n�2

2 10 "n�2

2

0 Successor 3 3 3 3 3

1 Addition 4 5 6 7 12

2 Multiplication 4 6 8 10 20

3 Exponentiation 4 9 16 25 100

4 Tetration 4 27 64 3125 10

10

5 Pentation 2

2

= 4 3

3

3 ⇡ 7.63 · 1012 4

.

.

.

4

|{z}

4

= 4

4

256

5

.

.

.

5

|{z}

5

= 5

5

53125

10

.

.

.

10

| {z }

10

6 Hexation 2

2

= 4 3

.

.

.

3

|{z}

3

33

4

.

.

.

4

|{z}

4

.

.

.

4

|{z}

4

.

.

.

4

|{z}

4

5

.

.

.

5

|{z}

5

.

.

.

5

|{z}

5

.

.

.

5

|{z}

5

.

.

.

5

|{z}

5

10

.

.

.

10

| {z }

.

.

.

| {z }

10

.

.

.

10

| {z }

10

, 9 occurrences of 10.
.

.

10

rank n Name 2 "n�2

2 2 "n�2

3 2 "n�2

4 2 "n�2

5 2 "n�2

10

0 Successor 3 4 5 6 11

1 Addition 4 5 6 7 12

2 Multiplication 4 6 8 10 20

3 Exponentiation 4 8 16 32 ⇡ 1.27 · 1030

4 Tetration 2

2

= 4 2

2

2

= 16 2

.

.

.

2

|{z}

4

= 65536 2

.

.

.

2

|{z}

5

= 2

65536

2

.

.

.

2

|{z}

10

= 2

2

22
22

65536

5 Pentation 2

2

= 4 65536 = 2

.

.

.

2

|{z}

4

2

.

.

.

2

|{z}

2

.

.

.

2

|{z}

4

2

.

.

.

2

|{z}

2

.

.

.

2

|{z}

2

.

.

.

2

|{z}

4

2

.

.

.

2

|{z}

.

.

.

|{z}

2

.

.

.

2

|{z}

4

, 8 occurrences of 2.
.

.

2

6 Hexation 2

2

= 4 2

.

.

.

2

|{z}

2

.

.

.

2

|{z}

4

Exercise * Exercise Bonus Exercise

Remark 1.2. 2

10 written using only addition is

2 · (2 · (· · · (2 · 2) · · · ))
| {z }

10

= 2 · (2 · (2 · (2 · (2 · (2 · (2 · (2 · (2 · 2))))))))

= 2 ·

0

@

2 ·

0

@

2 ·

0

@

2 ·

0

@

2 ·

0

@

2 ·

0

@

2 ·

0

@

2 + · · ·+ 2

| {z }

4

1

A

1

A

1

A

1

A

1

A

1

A

1

A

= 2 + · · ·+ 2

| {z }

.

.

.

| {z }

2 + · · ·+ 2

| {z }

4

, 8 occurrences of 2 + · · ·+ 2.

Many other notations exist that denote both tetration and other hyper operators. One other will be presented
below.
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1.2 Conway’s chained arrow notation

This notation was created by John Conway [WC]. This notation can be used to write numbers that are too
large to concisely write using Knuth’s up-arrow notation.

Definition 1.3. [WC] A Conway chain is an expression of the form a

1

! a

2

! · · · ! a

n

, where the a

i

’s
are positive integers. The length of the chain is the number of numbers in the chain. This chain behaves
according to four rules. Let C represent a Conway chain.

1. The Conway chain a is the number a.

2. a ! b := a

b.

3. C ! a ! 1 = C ! a.

4. C ! a ! (b+ 1) = C ! (· · · (C ! (C ! (C) ! b) ! b) · · · ) ! b, where the expression on the right
has a copies of C.

Each of these rules evaluates a chain in terms of operations no “higher” than exponentiation, reduces the
length of the chain, or reduces the final element of the chain. It follows that a Conway chain can always be
evaluated to result in an integer, even though it may be quite large.

Example 1.4. Conway’s notation can be considered as a kind of superset of Knuth’s notation, as a chain
of length 3 is equivalent to an expression in Knuth’s notation.

• a ! b ! n = a "n b.

• 4 ! 3 ! 2 = 4 ! (4 ! 4 ! 1) ! 1 = 4 ! (4 ! 4) = 4 ! 4

4

= 4

4

4 ⇡ 1.34 · 10154.

• 3 ! 2 ! 2 ! 2 = 3 ! 2 ! (3 ! 2) ! 1 = 3 ! 2 ! (3 ! 2) = 3 ! 2 ! 9 = 3 "9 2.

• 4 ! 3 ! 2 ! 2 = 4 ! 3 ! (4 ! 3) ! 1 = 4 ! 3 ! 4

3

= 4 "43 3.

As a further illustration, we will express Graham’s number using these notations. [MG]

Definition 1.5. Consider a hypercube of dimension n and color each edge of the hypercube one of two
colors. Let N be the smallest n such that no matter what the coloring, a graph K

4

consisting of one color
and with coplanar vertices is formed. Graham’s number is an upper bound for N found by Graham and
Rothschild (1971), which is defined as g

64

where

g

1

= 3 """" 3 and g

n

= 3 " · · · "
| {z }

g

n�1

3.

This number satisfies
3 ! 3 ! 64 ! 2 < g

64

< 3 ! 3 ! 65 ! 2.

1.3 Numbers of the form

n

x

In accordance with the equation x

2

= a, a 2 C, one can consider the equation 2

x = a. Much like addition,
multiplication, and exponentiation, tetration has an inverse [B], and following exponentiation, it has two
inverses corresponding to the root and logarithm of exponentiation [WT].

Definition 1.6. We say that a is an n’th super-root of b if n

a = b.

We denote a by n

p
b

s

or
p
b

s

if n = 2.

Definition 1.7. The super-logarithm function slog is defined such that slog
a

b = n if n

a = b.

While x =

p
a

s

satisfies 2

x = a, one can solve this equation in terms of more familiar functions, specifically
ones that were not designed to solve precisely this equation.
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Definition 1.8. [CGHJK] The Lambert W function is the (multivalued) inverse function of f (z) = ze

z

(z 2 C).

A value of the function at z is denoted by W (z) (that is, W (z) satisfies z = W (z) e

W (z)). Various
branches of W , each a normal function, are denoted by subscripts such as W

0

and W�1

[CGHJK]. This
function has numerous applications in mathematics, and one of them is to solve equations of the form
x

x

= a. Any solution satisfies the following equations:

x log x = log a

(log x) e

log x

= log a

log x = W (log a)

x = e

W (log a)

.

One question about numbers of the form n

x is whether or not there exist irrational numbers a such that n

a

is rational. Note that
�

n

p
2

�

n

= 2 so the statement is true for numbers of the form a

n.

Theorem 1.9. [AT] Every rational number r 2
⇣

�

1

e

�

1
e

,1
⌘

either belongs to the set

�

1

1

, 2

2

, 3

3

, . . .

 

or is

of the form a

a

for an irrational a.

Proof. Let f (x) = x

x. Since f is increasing on
�

1

e

,1
�

and lim

x!1 f (x) = 1, for each r 2
⇣

�

1

e

�

1
e

,1
⌘

there is a unique a 2 R such that r = a

a. Suppose that a is rational, and write a =

b

c

and r =

s

t

in lowest
terms. Then

✓

b

c

◆

b

c

=

s

t

b

b

c

c

b

c

=

s

t

b

b

c

t = sc

b

c

b

b

t

c

= s

c

c

b

.

Since (b, c) = (s, t) = 1, a prime p divides t

c iff p divides c

b, and then p cannot divide b

b or s

c. Similarly, a
prime q divides bb iff q divides sc, and then q cannot divide t

c or cb. Then b

b

t

c

= s

c

c

b

= p

e1
1

· · · pem
m

q

f1
1

· · · qfn
n

where p

1

, . . . , p

m

divide only t

c and c

b and q

1

, . . . , q

n

divide only b

b and s

c, so t

c

= c

b. Suppose that c > 1.
There exists a prime p, positive integers i, j, k, and l where k and l are relatively prime to q, so that t = p

i

k

and c = p

j

l. Then since
�

p

i

k

�

c

=

�

p

j

l

�

b, we have

jb = ic = ip

j

l,

which implies that p

j divides jb. But since p divides c and (b, c) = 1, pj actually divides j, so p

j  j. But
we know that

p

j � 2

j

> j for j 2 N,

which is a contradiction. Thus c = 1.

The method of proof for the 3

x case uses an application of the Gelfond-Schneider Theorem [AT].

Theorem 1.10. (Gelfond-Schneider) If a 6= 0, 1 is an algebraic number and b is an irrational algebraic

number, then a

b

is transcendental.

Corollary 1.11. [AT] Every rational number r 2 (0,1) either belongs to the set

n

1

1

1

, 2

2

2

, 3

3

3

, . . .

o

or is of

the form a

a

a

for an irrational a.
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Proof. Let f (x) = x

x

x

. First we note that

lim

x!0

+
f (x) = lim

x!0

+
x

x

x

=

✓

lim

x!0

+
x

◆

lim

x!0+ x

x

= 0

1

= 0

and f

0
(x) = x

x

x

x

x�1

(1 + x (log x) (1 + log x)). x

x

x

and x

x�1 are positive on (0,1),
(

1 + x (log x) (1 + log x) � 1 0 < x  1

e

or 1  x

1 + x (log x) (1 + log x) > 1 + (log x) (1 + log x) =

�

log x+

1

2

�

2

+

3

4

> 0

1

e

< x < 1

,

and f (x) ! 1. So f is a bijection from (0,1) to (0,1). Now let r 2 Q+ and a be the unique number
such that 3

a = r. We can assume that a is rational, so we write a =

b

c

in lowest terms and define ↵ =

b

c

and

� =

�

b

c

�

b

c . Suppose that m > 1. Then � is a root of the polynomial p (x) = c

b

x

c � b

b. By Theorem 1.9, � is
irrational. So by the Gelfond-Schneider Theorem, r =

3

a = ↵

� is transcendental, thus irrational. So a must
be an integer if it is rational.

Note that in contrast,
�

1

2

�

n

=

1

2

n

is rational.
Remark 1.12. The proof appears to still hold if “rational number” in the statement of the corollary is replaced
with “algebraic.”

According to [AT] the question for n

a, n � 4, is open. However, they conjecture a result similar to the
cases n = 2 and n = 3.

Conjecture 1.13. For n � 4, every rational number r 2 (0,1) either belongs to the set {n1, n

2,

n

3, . . .} or

is of the form

n

a for an irrational a.

1.4 Extensions

Tetration can be extended to bases that are not positive integers. Following the pattern lim

x!0

n

x =

(

1 n even
0 n odd

(evidence for this assertion is in the next section), one can define n

0 = 1. For the complex

number i, we have

i

a+bi

= e

(a+bi) log i

= e

1
2⇡i(a+bi)

= e

� b

2⇡

⇣

cos

a

2

⇡ + i sin

a

2

⇡

⌘

,

so if n

i = a+ bi then n+1

i = e

� b

2⇡
cos

a

2

⇡+ ie

� b

2⇡
sin

a

2

⇡. This method works similarly for a general complex
number [WT]. Tetration can also be extended, in a limited way, to hyperexponents that are not positive
integers. Let x > 0 and a, b 2 N. Since n+1

x = x

(

n

x) for n � 1, we have log

x

n+1

x =

n

x for n � 1.
Then one can extend this rule to n = 0 to define 0

x as log

x

1

x = log

x

x = 1. Continuing this process gives
�1

x := log

x

0

x = log

x

1 = 0 and �2

x := log

x

�1

x = log

x

0, which is undefined. Thus n

x cannot be extended
in this way to integers �2 or smaller [B]. When x is multiplied by or raised to the power of a rational number,
the rules of x · a

b

=

ax

b

and x

a

b

=

b

p
x

a, which involve inverse functions, hold. So for tetration, one may
attempt to define a

b

x to be b

p
a

x

s

[B]. In the rules involving multiplication and exponentiation, the result
does not change if a and b are multiplied by the same natural number, but that property does not hold in
the proposed definition for tetration. Let y =

2
3
x and ȳ =

4
6
x, then

y =

3
p

2

x

s

3

y =

2

x

and

ȳ =

6
p

4

x

s

6

ȳ =

4

x
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but y and ȳ are not necessarily equal, see Figure 2. Since the definition of x """ n contains x "" x =

x

x,
the definition of pentation for noninteger x if n � 2 requires that x

x be well-defined.

1.5 The infinite power tower h (x) = x

x

x

.

.

.

Proposition 1.14. Let f be continuous and suppose that the sequence (a

n

) defined by

a

1

= x, a

2

= f (x) , a

3

= f (f (x)) , a

4

= f (f (f (x))) , . . .

converges to l. Then f (l) = l.

For x > 0, consider the sequence (b

n

) where b

1

= x, b
2

= x

x, b
3

= x

x

x

, and so on. The symbol

x

x

x

.

.

.

refers to the limit of (b
n

) if it exists [SM] [KA]. Let b be this limit, then by the proposition, xb

= b. Note

that this equation implies x = b

1
b , so h (x) = x

x

x

.

.

.

is the inverse function of g (x) := x

1
x whenever both are

well-defined and on a domain where g is injective.

Theorem 1.15. The function h (x) = x

x

x

.

.

.

(x > 0) converges for e

�e  x  e

1
e

and diverges elsewhere.

Proof. (Overview of the proof, [KA]) The sequence (b

n

) follows one of four cases depending on the value of
x.

1. If 1  x, then b

1

 b

2

 b

3

 · · · .

(a) If 1  x  e

1
e , then (b

n

) is also bounded above by e, thus it converges.

(b) If e 1
e

< x, then note that if b exists then x

b

= b implies that x = b

1
b , and the function f (y) = y

1
y

has a maximum at e

1
e . Thus (b

n

) cannot converge.

2. If 0 < x < 1, then b

1

< b

3

< b

5

< · · · and b

2

> b

4

> b

6

> · · · . Since 0 < x

y

< 1 for 0 < x < 1 and
0 < y < 1, both these subsequences are bounded and thus converge.

(a) If e�e  x < 1, then (b

2n�1

) and (b

2n

) converge to the same value.
(b) If 0 < x < e

�e, then (b

2n�1

) and (b

2n

) converge to different values.

A graph of f (x) = b

n

(x), n = 1, . . . , 16, is given in Figure 3. The above domain of convergence
corresponds to the domain e

�1  x  e of the inverse function g with range e

�e  g (x)  e

1
e . Convergence

also holds for certain complex numbers, once h is extended to C. Since z

w

= e

w log z, one needs to choose a
branch of log z to use; Thron uses the principal branch [T].

Theorem 1.16. [T] h (z) converges if |log z|  1

e

. For such z, |log h (z)|  1.

(In fact, Thron proves a more general result, where w = z

z

z

.

.

.

3
2

1

converges if |log z
k

|  1

e

for all k, and then
|logw|  1.) Shell provides a number of regions which h (z) converges within, and one of them is formulated
below.

Theorem 1.17. [SD] h (z) converges if z = e

⇠e

�⇠

for some |⇠|  log 2.

While larger than Thron’s region, Shell’s region does not completely contain Thron’s region. In the other
direction, Carlsson provides a region outside of which h (z) does not converge [KA].
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Theorem 1.18. [KA] If h (z) converges, then z = e

⇠e

�⇠

for some |⇠|  1.

Figure 4 illustrates these regions. Observe that the region of Carlsson is larger than the union of Thron’s
and Shell’s regions, and this statement is still true if the rest of Shell’s regions are included [KA]. An open
question is to find the subset of C such that h (z) converges inside it and diverges outside it. The Lambert

W function can also write h (z) = z

z

z

.

.

.

in a closed form expression [CGHJK]. For values of z such that

h (z) = z

z

z

.

.

.

converges, the equation h (z) = z

h(z) holds and it can be solved in terms of the W function to
get

h (z) =

W (� log z)

� log z

.

1.6 The z = x

x

spindle

In this section we will let log x be the multi-valued complex logarithm, and Log x be the single-valued
principal branch of log x. Recall the definition of x

x in terms of logarithms, x

x

= e

x log x. While x is
restricted to be real, log x and z = x

x are allowed to be complex, so the complex logarithm is involved. Let
x > 0. Suppose that y = Logx, then e

y+2i⇡n

= e

y

= x for all n 2 N, so {Log |x|+ i⇡n}
n even

is the set of
values of the complex logarithm of x. Let x

0
< 0. For y

0
= Log |x0|, we similarly have {Log |x0|+ i⇡n}

n odd

as the set of values of the complex logarithm of x0. The resulting family of functions representing x

x is

t

n

(x) := e

x(Log|x|+i⇡n)

,

where t

n

has a domain of (0,1) if n is even and a domain of (�1, 0) if n is odd. Each t

n

is called a thread
and the graph of all threads is called the x

x spindle [MM]. A graph of t
n

(x) for n = 0, . . . , 10 is given in
Figure 5.1. In Figure 5.2 only the n = 3 and n = 4 threads are displayed. Let z = u+ vi. If we restrict
ourselves to real values of xx (the xu-plane), then each thread t

n

(n 6= 0) takes real values (intersects the
plane) whenever 2⇡nx is a multiple of 2⇡, that is, for x =

k

n

. (t
0

takes entirely real values for 0 < x < 1.)
Indeed, for p, q 2 N and q odd,

✓

�p

q

◆� p

q

=

✓

� q

r

p

q

◆�p

=

8

>

<

>

:

⇣

p

q

⌘� p

q

p even

�
⇣

p

q

⌘� p

q

p odd
,

so x

x is defined for multiples of 1

q

[MM]. Now consider the set of z for a given x. For a fixed x 2 Q, write

x =

p

q

in lowest terms. Then t

n

(x) = e

p

q

Log| p
q

|+in⇡

p

q takes one of 2q distinct values evenly spaced around

the circle |z| = e

p

q

Log| p
q

|
= |x|x corresponding to n = 0, . . . , 2q� 1. But since n is always even or always odd

depending on the sign of x, only q distinct values evenly spaced actually occur for any given x. For a fixed
x /2 Q, distinct m and n result in t

m

(x) 6= t

n

(x) on the circle. Let " > 0, then by the pigeonhole principle,
given enough distinct values of n, there will exist two threads t

n

0 and t

n

00 that satisfy the condition that the
distance between t

n

0
(x) and t

n

00
(x) along the circle is less than ". Then for k 2 N,

�

t

n

0
+(n

00�n

0
)k

(x)

 

is a
set of points that wrap around the entire circle such that any two consecutive elements have distance less
than " [MM].
Remark 1.19. If one uses this approach to the (complex) square root function represented by z =

p
x =

e

1
2 (Log|x|+i⇡n), where n is even for x > 0 and odd for x < 0, then one gets only two distinct branches for

each half ({x : x > 0} and {x : x < 0}) as expected.
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3 List of Figures 

Figure 1 Figure 2                                          

y = x + 2, y = x·2, y = x2, and y = 2x.  The blue curve is 3y = 2x and the red curve is 6y = 4x.         

Figure 3 Figure 4                                                                 

 The red line is the convergence interval for real z,        
 the green curve is the boundary of Thron’s region,     

The vertical lines are, from left to right, x = e–e,  the purple curve is the boundary of the Shell’s             
x = 1, and x = e1/e. Yellow to red curves are y = b2n region mentioned in the handout, and the blue         
and green to blue curves are y = b2n – 1.  curve is the boundary of Carlsson’s region.  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Figures 5.1 (top) and 5.2 (bottom) 

The graph of z = ex·log|x| + inπx. x is along the axis in the same direction as the spindle, and z = u + vi is the 
plane perpendicular to that axis, where the vertical axis represents u. The frame limits are [–3, 2] × [–2.5, 
2.5]2. The thick black curve is n = 0. [Top] The blue curves are n = 2, 4, 6, 8, 10, and the reddish curves 
are n = 1, 3, 5, 7, 9. [Bottom] The blue curve is n = 4 and the red curve is n = 3. 
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