

Mathematics 2162.01, 2162.02 Accelerated Calculus II Accelerated Calculus II for Engineers 2162.01(Sp) 2162.02(Au, Sp) 5 credits

Catalog Description:

Multivariable calculus; introduction to Taylor series.

<u>Prerequisites</u>:

C- or better in 1161.xx or 1181H.

Exclusions:

For 2162.01: Not open to students with credit for any higher numbered math class numbered 2162 or higher.

For 2162.02: Intended for students in Freshman Engineering Honors and not open to students with credit for any higher numbered math class numbered 2162 or higher.

Text:

<u>Calculus for Scientists and Engineers: Early Transcendentals</u>, 2nd OSU custom edition, by Briggs, Cochran, Gillett, Person, published by Pearson, ISBN: 9781269753449

Topics:

9.1; 9.2	An Overview; Sequences
9.2; 9.3	Sequences; Infinite Series
9.4	Divergence and Integral Tests
9.5	Ratio, root, and Comparison Tests
9.5; 9.6	Ratio, root, and Comparison Tests; Alternating Series;
10.1; 10.2	Approximating Functions with Polynomials; Properties of power Series
10.3; 10.4	Taylor Series; Working with Taylor Series
11.1; 11.2	Parametric Equations; Polar Coordinates
11.2; 11.3	Polar Coordinates; Calculus in Polar Coordinates

Midterm 1

- 12.1; 12.2 Vectors in the Plane; Vectors in Three Dimensions
- 12.3;12.4 Dot Products; Cross Products
- 12.5 Lines and Curves in Space
- 12.6 Calculus of Vector-Valued Functions
- 12.7; 12.8 Motion in Space; Length of Curves
- 12.9 Curvature and Normal Vectors
- 13.1; 13.2 Planes and Surfaces; Graphs and Level Curves
- 13.3 Limits and Continuity
- 13.4;13.5 Partial Derivatives; Chain Rule
- 13.6 Directional derivative and the Gradient

MIDTERM 2

- 13.7 Tangent Plane and Linear Approximation
- 13.8 Maximum/Minimum Problems
- 13.9 Lagrange Multipliers
- 14.1; 14.2 Double Integral over Rectangular Regions; Double Integrals over General Regions
- 14.2; 14.3 Double Integrals over General Regions; Double integrals in Polar Coordinates
- 14.4; 14.5 Triple Integrals; Triple Integrals in Cylindricals and Sphericals
- 14.5; 14.6 Triple Integrals in Cylindricals and Sphericals; Integrals for Mass Calculations
- 15.1 Vector Fields
- 15.2 Line Integrals
- 15.3 Conservative Vector Fields

MIDTERM 3

- 15.4 Green's Theorem
- 15.5 Divergence and Curl
- 15.6 Surface Integrals
- 15.7 Stokes' Theorem
- 15.8 Divergence Theorem