Duffin-Schaeffer Conjecture

Aug. 9, 2010

Duffin-Schaeffer Conjecture

• Diophantine approximation.

For $\alpha \in Q^c \cap [0, 1)$, there are infinitely many integers m, n with (m, n) = 1 such that

$$\left|\alpha - \frac{m}{n}\right| < \frac{1}{n^2}$$

• Let $\psi: \mathbb{N} \to [0,\infty)$

$$A_{\infty} = \{ \alpha \in [0,1) : \left| \alpha - \frac{m}{n} \right| < \frac{\psi(n)}{n}, (m,n) = 1 \text{ i.o.} \}$$

Question : What is the Lebesque measure of A_{∞} ?

Lebesque Measure μ on [0, 1)

- μ(I) = b a, for I = [a, b], (a, b), [a, b), or (a, b], so μ[0, 1) = 1
- For $A = \bigcup_k I_k$, If it is disjoint, $\mu(A) = \sum_k \mu(I_k)$ In general, $\mu(A) \le \sum_k \mu(I_k)$
- A is of measure zero, μ(A) = 0 if for any ε, there is a finite or countable family of intervals I_k such that A ⊂ ∪I_k and ∑μ(I_k) ≤ ε.

•
$$\mu(A) = 1$$
 if $\mu(A^c) = 0$.

• A property holds for a.e. x if the set of x it fails to hold the property is a set of measure zero.

Lebesque Measure μ on [0, 1)

Example

Countable set $A = \{r_k\}$ is of measure zero. Consider $I_k = (r_k - \frac{\epsilon}{2^{k+1}}, r_k + \frac{\epsilon}{2^{k+1}})$ and $\mu(I_k) = \frac{\epsilon}{2^k}$

 from Diophantine approximation, for almost every α, there are infinitely many pairs of m, n with (m, n) = 1

$$\left|\alpha - \frac{m}{n}\right| < \frac{1}{n^2}$$

Let $\psi: N \to [0, \infty)$ and suppose that $n\psi(n)$ non-increasing. If $\sum \psi(n) = \infty$, then $\mu(A_{\infty}) = 1$,i.e, for a.e. α , there are infinitely many pairs of m, n with (m, n) = 1

$$\left|\alpha - \frac{m}{n}\right| < \frac{\psi(n)}{n}$$

However, if $\sum \psi(n) < \infty$, then $\mu(A_{\infty}) = 0$, i.e., for a.e. α , there are only finitely many pairs of m, n with (m, n) = 1

$$\left|\alpha - \frac{m}{n}\right| < \frac{\psi(n)}{n}$$

Examples of Khintchine's theorem

there are only finitely many pairs of m, n with (m, n) = 1

$$\left|\alpha - \frac{m}{n}\right| < \frac{1}{n^2 (\log n)^{1+\epsilon}}$$

御 と く き と く き とう

Note that

$$A_{\infty} = \{ \alpha : \alpha \in A_n \text{ i.o} \}$$

$$A_n = \{ \alpha : \exists m \text{ s.t. } \left| \alpha - \frac{m}{n} \right| < \frac{\psi(n)}{n} \text{ with}(m, n) = 1 \}$$
$$= \bigcup_{\substack{1 \le m \le n \\ (m, n) = 1}} I(m, n)$$

where
$$I(m, n) = \left(\frac{m}{n} - \frac{\psi(n)}{n}, \frac{m}{n} + \frac{\psi(n)}{n}\right)$$

So
 $\mu(A_n) \le \sum \mu(I_{m,n}) = 2\frac{\psi(n)}{n}\phi(n)$

$$\mu(A_n) \leq \sum_m \mu(I_{m,n}) = 2 \frac{\varphi(n)}{n} \phi(n)$$

and equailty holds for $\psi(n) \leq \frac{1}{2}$,

æ

・聞き ・ ほき・ ・ ほき

Probability

.

- $\mu(A)$: the probability of $x \in A$, picking $x \in [0,1)$
- Borel-Cantelli lemma (a) If $\sum \mu(A_n) < \infty$, then $\mu(A_{\infty}) = 0$ (b) If $\sum \mu(A_n) = \infty$ and $\mu(A_i \cap A_j) = \mu(A_i)\mu(A_j)$. then $\mu(A_{\infty}) = 1$.
- Erdős-Rényi theorem $\sum \mu(A_n)$ diverges. Then,

$$\mu(A_{\infty}) \geq \limsup_{N} \frac{(\sum_{1}^{N} \mu(A_{n}))^{2}}{\sum_{1 \leq i,j \leq N} \mu(A_{i} \cap A_{j})}$$

• Corollary of BC Lemma If $\sum \frac{\psi(n)}{n}\phi(n)$ converges, for almost every α , there are only finitely many m, n with (m, n) = 1

$$\left|\alpha-\frac{m}{n}\right|<\frac{\psi(n)}{n}$$

If $\sum \frac{\psi(n)}{n}\phi(n)$ diverges, then $\mu(A_{\infty}) = 1$, that is, for almost every α , there are infinitely many m, n with (m, n) = 1

$$\left|\alpha - \frac{m}{n}\right| < \frac{\psi(n)}{n}$$

Remark

Duffin-Schaeffer : $\psi(n) \leq \frac{1}{2}$ so, $\sum \mu(A_n) = \sum \frac{\psi(n)}{n} \phi(n)$ Pollington-Vaughan : overcome this difficulty. Let $\psi: \mathbb{N} \to [0,\infty)$.

$$B = \{ lpha \in [0,1) : |lpha - rac{m}{n}| < rac{\psi(n)}{n} ext{ i.o } \}$$

Then, $\mu(B)$ is either 0 or 1.

Remark

The proof is based on that $Tx = 2x \pmod{1}$ is ergodic. (*T* is ergodic if $T^{-1}A = A$, then $\mu(A)$ is 0 or 1.)

Let
$$\psi: \mathbb{N} \to [0,\infty)$$
.

$$A_{\infty} = \{\alpha \in [0,1) : \left| \alpha - \frac{m}{n} \right| < \frac{\psi(n)}{n}, (m,n) = 1 \text{ i.o.} \}$$

Then, $\mu(A_{\infty})$ is either 0 or 1.

Remark

The proof uses the fact that for all prime p, $T(x) = px + \frac{s}{p} \pmod{1}$ is ergodic, • Theorem Suppose that $\psi(n) \leq \frac{1}{2}$ and $\sum \frac{\psi(n)}{n} \phi(n)$ diverges. In addition,

$$\limsup_{N} \left(\sum_{1}^{N} \frac{\psi(n)}{n} \phi(n) \right) \left(\sum_{1}^{N} \psi(n) \right)^{-1} \ge c > 0$$

Then $\mu(A_\infty) = 1$

Lemma

• Let M, N be positive integers and A be a positive number. Let k be the number of solutions for $0 < |mN - nM| \le A$ with $1 \le m \le M$ and $1 \le n \le N$. Then $k \le 2A$ Proof) Let $M' = \frac{M}{(M,N)}$ and $N' = \frac{N}{(M,N)}$. $0 < |mN' - nM'| \le \frac{A}{(M,N)}$

This solution satisfies $mN' = a \pmod{M'}$ for $1 \le |a| \le \frac{A}{(M,N)}$, which has only one solution in $m \pmod{M'}$ for each a. So, there are (M, N) number of solutions in m for each value of a. Hence

$$k \leq 2\frac{A}{(M,N)}(M,N) = 2A$$

Image: A Image: A

Outline of Proof 1

Show that $\mu(A_n \cap A_t) \le 8\psi(n)\psi(t)$, for $n \ne t$. k : number of intersections of I(m, n) and I(s, t)

L : maximum length of intersection of I(m, n) and I(s, t)

•
$$k \le 4 \max(t\psi(n), n\psi(t))$$

 $I(m, n) \cap I(s, t) \ne \emptyset$
 $\Rightarrow 0 < \left|\frac{m}{n} - \frac{s}{t}\right| < \frac{\psi(n)}{n} + \frac{\psi(t)}{t}$
 $\Rightarrow 0 < |mt - sn| \le t\psi(n) + n\psi(t) \le 2\max(t\psi(n), n\psi(t))$

• $L \leq \min \text{ of two intervals} = 2\min(\frac{\psi(n)}{n}, \frac{\psi(t)}{t})$

$$\mu(A_n \cap A_t) \le k \cdot L$$

$$\le 4 \max(t\psi(n), n\psi(t)) \cdot 2 \min(\frac{\psi(n)}{n}, \frac{\psi(t)}{t})$$

$$\le 8\psi(n)\psi(t)$$

apply Erdős-Rényi theorem

• From
$$\psi(n) \leq \frac{1}{2}$$
, $\mu(A_n) = 2\frac{\psi(n)}{n}\phi(n)$ and $\sum \mu(A_n) = \infty$

•
$$\sum_{1 \leq i,j \leq N} \mu(A_i \cap A_j) \leq 8 \left(\sum_{1}^N \psi(n)\right)^2 + \sum_{1}^N \psi(n)$$

$$\mu(A_{\infty}) \geq \limsup_{N} \frac{\left(\sum_{1}^{N} \mu(A_{n})\right)^{2}}{\sum_{1 \leq i, j \leq N} \mu(A_{i} \cap A_{j})}$$
$$\geq \limsup_{N} \frac{1}{8} \left(\sum_{1}^{N} \frac{\psi(n)}{n} \phi(n)\right)^{2} \left(\sum_{1}^{N} \psi(n)\right)^{-2} > 0$$

• the Zero One Law $\Rightarrow \mu(A_{\infty}) = 1.$

聞 と く き と く き と

Corollary of Duffin-Schaeffer Theorem

Recall that

$$\sum_{\substack{p:\text{prime}}} \frac{1}{p} = \infty$$
$$\frac{\phi(p)}{p} = 1 - \frac{1}{p} \ge \frac{1}{2}$$

Hence,

$$\sum \frac{1}{p} \frac{\phi(p)}{p} \ge \frac{1}{2} \sum \frac{1}{p}$$

• For almost every α ,

there are infinitely many prime p and integer m such that

$$|\alpha - \frac{m}{p}| < \frac{1}{p^2}$$

Erdős(1970)

$$\psi(n) = \frac{c}{n} \operatorname{or} 0$$

• Valler(1978)

$$\psi(n) \leq \frac{c}{n}$$

• Pollington and Vaughan (1990) k dimensional version $(k \ge 2)$ $\sum \left(\psi(n)\frac{\psi(n)}{n}\right)^k$ diverges. Then, for a.e. $x = (x_1, \dots, x_k) \in [0, 1)^k$ $\max(|x_1n - a_1|, \dots, |x_kn - a_k|) < \psi(n)$ with $(a_1 \dots a_k, n) = 1$ have infintely many solutions.

- Metric Number Theory, Glyn Harman (1998) Oxford University Press
- Duffin, R.J. and Schaeffer, A.C. (1941).
 Khintchine's problem in metric Diophantine approximation Duke J.,8, 243-255