Gordon Prize Examination

February 21, 2009

1. A spherical cherry of radius R is dropped into a glass of the form $z=\left(x^{2}+y^{2}\right)^{2}$. Find the maximum R for which the cherry will reach the bottom of the glass.
2. Is there a differentiable function $f(x)$ defined for $x>0$, satisfying $f^{\prime}(x)=f(x+1)$ for all $x>0$, and such that $\lim _{x \rightarrow \infty} f(x)=\infty$?
3. Let a and b be real numbers. Consider the power series (in powers of x) for the function $f(x)=e^{a x} \cos (b x)$. Show that the series either has no zero coefficients or has infinitely many zero coefficients.
4. Show that there is no 2009×2009 matrix A with rational entries such that $A^{2}=2 I$, where I is the identity matrix.
5. Let X be the square $[0,1] \times[0,1]$ in the plane. By $|p-q|$ we will denote the distance between points $p, q \in X$. Suppose that $f: X \longrightarrow X$ is a surjective contraction; that is, a surjective mapping satisfying $|f(p)-f(q)| \leq|p-q|$ for all $p, q \in X$. Prove that f is actually an isometry; that is, $|f(p)-f(q)|=|p-q|$ for all $p, q \in X$.
6. Assume that your calculator is broken so that you can only add and subtract real numbers and compute their reciprocals. How can you use it to compute products?
