2011 Gordon Prize examination

1. Let $1 \leq a_{1}, \ldots, a_{1006} \leq 2011$ be distinct positive integers. Prove that there exist i, j such that $a_{i}+a_{j}=2012$.
2. Let $g(x)=a_{0} x^{r_{0}}+a_{1} x^{r_{1}}+a_{2} x^{r_{2}}+\ldots+a_{2011} x^{r_{2011}}, x>0$, where a_{0}, \ldots, a_{2011} are nonzero real numbers and r_{0}, \ldots, r_{2011} are distinct real numbers. Prove that g has at most 2011 zeroes in $(0, \infty)$.
3. Prove that the "Pascal matrix" $P_{n}=\left(\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 1 & 2 & 3 & \ldots & n \\ 1 & 3 & 6 & \cdots & \binom{n+1}{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & n & \binom{n+1}{2} & \ldots & \binom{2 n-2}{n-1}\end{array}\right)$ has determinant 1 .
4. Let a, b, c be distinct complex numbers. Prove that the triangle $\triangle a b c$ is equilateral iff $a^{2}+b^{2}+c^{2}=a b+b c+c a$.
5. Prove that $\int_{-2011}^{2011} \frac{d x}{1+x^{2011}+\sqrt{1+x^{4022}}}=2011$.
6. Define $F: \mathbb{C}^{3} \longrightarrow \mathbb{C}^{3}$ by $F(x, y, z)=(x+y+z, x y+y z+z x, x y z)$. Prove that F is a surjection (an "onto" map).
