1. Let $n \in \mathbb{N}$. Find all complex number solutions $x_{1}, \ldots, x_{n} \in \mathbb{C}$ to the system of equations

$$
\left\{\begin{aligned}
x_{1}+\ldots+x_{n}= & 0 \\
x_{1}^{2}+\ldots+x_{n}^{2}= & 0 \\
\vdots & \vdots \\
x_{1}^{n}+\ldots+x_{n}^{n}= & 0
\end{aligned}\right.
$$

(and prove that there are no other solutions).
2. Which number is greater, $\log (5 / 4)$ or $\arctan (1 / 2)$? (Justify your answer, of course.)
3. Prove that any closed polygonal curve C of length 1 in the plane is contained in a disk D of radius $1 / 4$. (A polygonal curve is a union of finitely many intervals $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n-1} A_{n}$; it is closed if $A_{n}=A_{1}$. The statement of the problem actually holds for any closed rectifiable (that is, "having length") curve C, but if you don't know what it is, assume that C is polygonal.)

4. Every point of the plane is colored one of two colors, red or blue. Let R be the set of all distances between red points,

$$
R=\{d(P, Q): \text { both } P \text { and } Q \text { are red }\}
$$

and let B be the set of all distances between blue points,

$$
B=\{d(P, Q): \text { both } P \text { and } Q \text { are blue }\}
$$

where $d(P, Q)$ denotes the distance between points P and Q. Prove that at least one of these sets R, B is equal to $[0, \infty)$.
5. Let A and B be two (real) $n \times n$ matrices such that $A+B=A B$. Prove that $A B=B A$.
6. Let $z_{1}, \ldots, z_{n} \in \mathbb{C}$ and $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=r>0$. Prove that the number $a=\left(z_{1}+z_{2}\right)\left(z_{2}+z_{3}\right) \ldots\left(z_{n-1}+z_{n}\right)\left(z_{n}+z_{1}\right)\left(z_{1} z_{2} \ldots z_{n}\right)^{-1}$ is real.

