2014 Gordon examination problems

1. Prove that there does not exist a prime integer of the form $1001001 \ldots 1001$.
2. Let $n \in \mathbb{N}$ and suppose that S is an $(n+1)$-element subset of the set $\{1,2, \ldots, 2 n\}$. Prove that there are $a, b \in S$ (not necessarily distinct) such that the sum $a+b$ is also in S.
3. Let $p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be a polynomial with complex coefficients satisfying $\left|a_{i}\right| \leq 2014, i=0, \ldots, n-1$. If $z \in \mathbb{C}$ satisfies $p(z)=0$, prove that $|z|<2015$.
4. The straight lines on the picture are tangent to the circles. Prove that $|A B|=|C D|$.

5. Suppose that all eigenvalues of an $n \times n$ matrix A are real and that $\operatorname{tr}\left(A^{2}\right)=\operatorname{tr}\left(A^{3}\right)=\operatorname{tr}\left(A^{4}\right)$. Prove that $\operatorname{tr}\left(A^{k}\right)=\operatorname{tr}(A)$ for all $k \in \mathbb{N}$.
6. Prove that $\int_{0}^{\pi / 2} \log (\sin x) d x=-\frac{\pi}{2} \log 2$.
