2014 Gordon examination problems

- 1. Prove that there does not exist a prime integer of the form 1001001...1001.
- **2.** Let $n \in \mathbb{N}$ and suppose that S is an (n + 1)-element subset of the set $\{1, 2, \ldots, 2n\}$. Prove that there are $a, b \in S$ (not necessarily distinct) such that the sum a + b is also in S.
- **3.** Let $p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ be a polynomial with complex coefficients satisfying $|a_i| \leq 2014, i = 0, \ldots, n-1$. If $z \in \mathbb{C}$ satisfies p(z) = 0, prove that |z| < 2015.
- 4. The straight lines on the picture are tangent to the circles. Prove that |AB| = |CD|.

5. Suppose that all eigenvalues of an $n \times n$ matrix A are real and that $\operatorname{tr}(A^2) = \operatorname{tr}(A^3) = \operatorname{tr}(A^4)$. Prove that $\operatorname{tr}(A^k) = \operatorname{tr}(A)$ for all $k \in \mathbb{N}$.

6. Prove that
$$\int_0^{\pi/2} \log(\sin x) \, dx = -\frac{\pi}{2} \log 2.$$