2017 Gordon examination problems

1. Find all real x satisfying the equation

$$
\sqrt{\frac{x-2}{2018}}+\sqrt{\frac{x-3}{2017}}+\sqrt{\frac{x-4}{2016}}=\sqrt{\frac{x-2018}{2}}+\sqrt{\frac{x-2017}{3}}+\sqrt{\frac{x-2016}{4}} .
$$

2. Suppose z_{1}, \ldots, z_{k} are complex numbers of absolute value 1 ; for each $n=1,2, \ldots$ put $w_{n}=z_{1}^{n}+\cdots+z_{k}^{n}$. If the sequence $\left(w_{n}\right)$ converges, prove that $z_{1}=\cdots=z_{k}=1$.
3. In an invertible $n \times n$ matrix, what is the maximal number of entries that can be equal to 1 ?
4. Suppose p is a polynomial with integer coefficients having at least 3 distinct integer roots. Prove that the equation $p(x)=1$ has no integer solutions.
5. An L-tetromino is an L-shape made of four unit squares: B. Suppose that an $m \times n$ chessboard is tiled (that is, covered completely and without overlapping) by k L-tetrominos; prove that k is even. (Each L-tetromino on the board covers 4 unit squares, and can be oriented in any way, allowing quarter-turns and reflections.)
6. For a quadratic polynomial p define the quadratic polynomials $T_{1} p$ and $T_{2} p$ as follows:

$$
T_{1} p(x)=x^{2} p\left(1+\frac{1}{x}\right) \text { and } T_{2} p(x)=(x-1)^{2} p\left(\frac{1}{x-1}\right) .
$$

Applying the operations T_{1} and T_{2} in some order, is it possible to transform $x^{2}+1$ to $x^{2}+2017 x+1$?

