2018 Gordon examination problems

1. Prove that for all
$$n \in \mathbb{N}$$
, $2n \sqrt[2n]{\frac{n!}{(3n)!}} < \log 3$.

(Here "log" stands for the natural logarithm, $\log = \ln = \log_e$.)

- **2.** Determine whether the integer part of $(1 + \sqrt{2})^{2018}$ is even or odd.
- **3.** Let $P = A_1 A_2 \dots A_n$ be a regular *n*-gon with center O, and let $R = \text{dist}(O, A_1)$. Prove that for any point X in the plane, $\sum_{k=1}^{n} \text{dist}(X, A_k)^2 = n(R^2 + d^2)$, where d = dist(X, O).
- 4. Suppose an ellipse E in the plane \mathbb{R}^2 has no points of the lattice \mathbb{Z}^2 in its interior. Prove that there are at most 4 points of \mathbb{Z}^2 on the boundary of E.
- **5.** Let T be a linear transformation of the vector space M_n of $n \times n$ real matrices such that det $T(A) = \det A$ for all $A \in M_n$. Prove that T is invertible.
- **6.** Prove that $\sin 1^{\circ}$ is irrational.