2018 Gordon examination problems

1. Prove that for all $n \in \mathbb{N}, \quad 2 n \sqrt[2 n]{\frac{n!}{(3 n)!}}<\log 3$. (Here "log" stands for the natural logarithm, $\log =\ln =\log _{e}$.)
2. Determine whether the integer part of $(1+\sqrt{2})^{2018}$ is even or odd.
3. Let $P=A_{1} A_{2} \ldots A_{n}$ be a regular n-gon with center O, and let $R=\operatorname{dist}\left(O, A_{1}\right)$. Prove that for any point X in the plane, $\sum_{k=1}^{n} \operatorname{dist}\left(X, A_{k}\right)^{2}=n\left(R^{2}+d^{2}\right)$, where $d=\operatorname{dist}(X, O)$.
4. Suppose an ellipse E in the plane \mathbb{R}^{2} has no points of the lattice \mathbb{Z}^{2} in its interior. Prove that there are at most 4 points of \mathbb{Z}^{2} on the boundary of E.
5. Let T be a linear transformation of the vector space M_{n} of $n \times n$ real matrices such that $\operatorname{det} T(A)=\operatorname{det} A$ for all $A \in M_{n}$. Prove that T is invertible.
6. Prove that $\sin 1^{\circ}$ is irrational.
