1. Prove that for all $n \in \mathbb{N}$, $2n \sqrt[n]{\frac{n!}{(3n)!}} < \log 3$.
 (Here “log” stands for the natural logarithm, $\log = \ln = \log_e$.)

2. Determine whether the integer part of $(1 + \sqrt{2})^{2018}$ is even or odd.

3. Let $P = A_1A_2\ldots A_n$ be a regular n-gon with center O, and let $R = \text{dist}(O, A_1)$. Prove that for any point X in the plane, $\sum_{k=1}^{n} \text{dist}(X, A_k)^2 = n(R^2 + d^2)$, where $d = \text{dist}(X, O)$.

4. Suppose an ellipse E in the plane \mathbb{R}^2 has no points of the lattice \mathbb{Z}^2 in its interior. Prove that there are at most 4 points of \mathbb{Z}^2 on the boundary of E.

5. Let T be a linear transformation of the vector space M_n of $n \times n$ real matrices such that $\det T(A) = \det A$ for all $A \in M_n$. Prove that T is invertible.

6. Prove that $\sin 1^\circ$ is irrational.