2019 Gordon examination problems

1. Prove that there are infinitely many primes p such that for some $n \in \mathbb{N}$ the integer $n^{2}+n+1$ is divisible by p.
2. Let f be the function $(0, \infty) \longrightarrow \mathbb{R}$ defined by: $f(x)=0$ if $x \notin \mathbb{Q}$, and $f(x)=1 / n^{3}$ if $x=m / n$ is rational in lowest terms. If $k \in \mathbb{N}$ is not a perfect square, prove that f is differentiable at \sqrt{k}.
3. Find the maximum of the integral $\int_{0}^{1}\left(x^{2020} f(x)-x^{2019} f^{2}(x)\right) d x$ over all continuous functions $f:[0,1] \longrightarrow \mathbb{R}$.
4. Let $S=\{z \in \mathbb{C}:|z|=1\}$. Suppose $z_{1}, \ldots, z_{n} \in S$ satisfy $\left|\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)\right| \leq 2$ for every $z \in S$. Prove that z_{1}, \ldots, z_{n} are the vertices of a regular n-gon.
5. Suppose C_{1}, C_{2} and C_{3} are cirlces of equal radius inscribed in a circle C and having a common intersection point O. For every $1 \leq i \leq 3$ let A_{i} be the tangency point of C_{i} and C, and for every $1 \leq i<j \leq 3$ let $B_{i j}$ be the intersection point of C_{i} and C_{j} other than O. Prove that for each $1 \leq i<j \leq 3$, the
 points $A_{i}, B_{i j}$, and A_{j} are collinear.
6. Let $A=\left(\begin{array}{cccc}a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\ a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\ \vdots & \vdots & \vdots \\ n_{n, 1} & a_{n, 2} & \ldots & a_{n, n}\end{array}\right)$ be an $n \times n$ real matrix with zero trace, i.e. $\sum_{i=1}^{n} a_{i, i}=0$. Prove that A is conjugate to a matrix with zero main diagonal. (That is, prove there exists an invertible $n \times n$ matrix P such that $P A P^{-1}=\left(\begin{array}{cccc}0 & b_{1,2} & \ldots & b_{1, n} \\ b_{2,1} & 0 & \cdots & b_{2, n} \\ \vdots & \vdots & \vdots \\ b_{n, 1} & b_{n, 2} & \ldots & 0\end{array}\right)$ for some real numbers $b_{i, j}$.)
