2019 Gordon examination problems

- 1. Prove that there are infinitely many primes p such that for some $n \in \mathbb{N}$ the integer $n^2 + n + 1$ is divisible by p.
- **2.** Let f be the function $(0, \infty) \longrightarrow \mathbb{R}$ defined by: f(x) = 0 if $x \notin \mathbb{Q}$, and $f(x) = 1/n^3$ if x = m/n is rational in lowest terms. If $k \in \mathbb{N}$ is not a perfect square, prove that f is differentiable at \sqrt{k} .
- **3.** Find the maximum of the integral $\int_0^1 (x^{2020} f(x) x^{2019} f^2(x)) dx$ over all continuous functions $f: [0, 1] \longrightarrow \mathbb{R}$.
- **4.** Let $S = \{z \in \mathbb{C} : |z| = 1\}$. Suppose $z_1, \ldots, z_n \in S$ satisfy $|(z z_1) \cdots (z z_n)| \le 2$ for every $z \in S$. Prove that z_1, \ldots, z_n are the vertices of a regular *n*-gon.
- 5. Suppose C_1 , C_2 and C_3 are cirles of equal radius inscribed in a circle C and having a common intersection point O. For every $1 \le i \le 3$ let A_i be the tangency point of C_i and C, and for every $1 \le i < j \le 3$ let B_{ij} be the intersection point of C_i and C_j other than O. Prove that for each $1 \le i < j \le 3$, the points A_i , B_{ij} , and A_j are collinear.

6. Let $A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix}$ be an $n \times n$ real matrix with zero trace, i.e. $\sum_{i=1}^{n} a_{i,i} = 0$. Prove that A is conjugate to a matrix with zero main diagonal. (That is, prove there exists an invertible $n \times n$ matrix P such that $PAP^{-1} = \begin{pmatrix} 0 & b_{1,2} & \dots & b_{1,n} \\ b_{2,1} & 0 & \dots & b_{2,n} \\ \vdots & \vdots & \vdots \\ b_{n,1} & b_{n,2} & \dots & 0 \end{pmatrix}$ for some

real numbers $b_{i,j}$.)