2020 Gordon examination problems

1. Evaluate $\int_{-\pi}^{\pi} \frac{\sin (2020 x)}{\left(1+2^{x}\right) \sin x} d x$.
2. Let $G=\left\{A_{1}, \ldots, A_{n}\right\}$ be a finite multiplicative group of real $k \times k$ matrices and let $S=\sum_{i=1}^{n} A_{i}$. If $\operatorname{trace}(S)=0$, prove that $S=0$.
3. Find all $b \in \mathbb{N}$ for which $\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}$ is an integer.
4. Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$. Prove that $\sum_{i, j=1}^{n} e^{v_{i} \cdot v_{j}} \geq n^{2}$ (where $u \cdot v$ denotes the inner product of vectors u and v).
5. Let $a, b \in \mathbb{R}, a b=1$. Evaluate $\operatorname{det}\left(\begin{array}{ccccc}2 & a & a^{2} & \ldots & a^{n-1} \\ b & 2 & a & \ldots & a^{n-2} \\ b^{2} & b & 2 & \ldots & a^{n-3} \\ \vdots & \vdots & \vdots & \vdots \\ b^{n-1} & b^{n-2} & b^{n-3} & \ldots & 2\end{array}\right)$.
6. Suppose a 10×10 board has some of its 1×1 squares colored red. After each minute passes, every non-red square that shares a side with at least two red squares also becomes red. If there are exactly 9 red squares at
 the start, may it happen that eventually all squares of the board become red?
