1. Solve: \(\sin^{2008} x + \cos^{2008} x = 1. \)

2. Let three adjacent squares be given, as in the diagram.
 Show that \(\angle ACB + \angle AEB + \angle AGB = 90^\circ. \)

3. Note that 2 can be written as a sum of the reciprocals of four distinct positive integers:
 \[2 = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{6}. \]
 Can 2 be written as a sum of the reciprocals of 2008 distinct positive integers:
 \[2 = \frac{1}{n_1} + \frac{1}{n_2} + \cdots + \frac{1}{n_{2008}} \]

4. Find all rational functions \(f(x) \) such that \(f(x^2 - x) = f(x^2 + x) \) for all real \(x. \)

5. Let \(x_1, x_2, \ldots, x_n \) be distinct integers \(> 1. \) Prove:
 \[\left(1 - \frac{1}{x_1^2} \right) \left(1 - \frac{1}{x_2^2} \right) \cdots \left(1 - \frac{1}{x_n^2} \right) > \frac{1}{2}. \]

6. Suppose \(x_1 > x_2 > \ldots \) is a decreasing sequence of real numbers. Suppose
 \[x_1 + \frac{x_4}{2} + \frac{x_9}{3} + \cdots + \frac{x_n^2}{n} < 1 \]
 for all \(n. \) Show that
 \[x_1 + \frac{x_2}{2} + \frac{x_3}{3} + \cdots + \frac{x_n}{n} < 3. \]

Answer each problem on the separate sheet containing the statement of the problem, or on an additional sheet. “Answers” without appropriate reasoning are insufficient.

Put your secret code name at the top of each answer sheet.

You may take this sheet with you when you leave. Be sure to hand in separately the cover sheet (with your name and secret code name).