1. The vertices of a regular 2011-gon are colored in two colors. Prove that some three vertices of the same color form an isosceles triangle. (A triangle is called isosceles if at least two of its sides have equal length.)
2. Let $g(x)=a_{0}+a_{1} x^{r_{1}}+a_{2} x^{r_{2}}+\ldots+a_{n} x^{r_{n}}, x>0$, where $n \in \mathbb{N}, a_{0}, a_{1}, \ldots, a_{n}$ are nonzero real numbers and r_{1}, \ldots, r_{n} are distinct nonzero real numbers. Prove that g has at most n zeroes in $(0, \infty)$.
3. Let $A B C$ be an equilateral triangle and P be a point on the arc $A C$ of the circumscribed circle. Prove that $|B P|=|A P|+|C P|$.

4. Prove that $a^{4}+b^{4}+c^{4} \geq a b c(a+b+c)$ for all $a, b, c \in \mathbb{R}$.
5. Solve the equation $\frac{x}{2+\frac{x}{2+\cdot \cdot_{2}+\frac{x}{2+\frac{x}{1+\sqrt{1+x}}}}}=1$, where "2" appears 2011 times.
6. Let a polynomial $p(x, y)$ satisfy $p(x+y, y-x)=p(x, y)$ for all $x, y \in \mathbb{R}$. Prove that p is constant.
