
2012 Rasor-Bareis Prize examination

1. Let n ∈ N and a ∈ R. Find all real number solutions x1, . . . , xn to the system of
equations
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(and prove that there are no other soulutions).

2. Let f be a real-valued function on [0, 1] such that f(0) = f(1) = 0 and
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≤ f(x) + f(y) for all x, y ∈ [0, 1].

Prove that the set of zeroes of f is dense in [0, 1] (that is, for any 0 ≤ a < b ≤ 1 there
exists a point x ∈ (a, b) such that f(x) = 0).

3. Prove that for any x ∈ R, sin(cos x) < cos(sin x).

4. Given a triangle △ABC, find the set
of points P inside this triangle such that
area(△APC) = 2 area(△APB).
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5. Suppose that every point of the plane is colored one of three colors, red, blue, or green.
Prove that for any x > 0 there are points P and Q in the plane having the same color and
such that d(P,Q) = x, where d(P,Q) denotes the distance between P and Q.

6. Find all n ∈ N such that p =
⌊
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is prime. (For a real number x, ⌊x⌋ denotes the
integer part of x, the largest integer ≤ x.)
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