2012 Rasor-Bareis Prize examination

1. Let $n \in \mathbb{N}$ and $a \in \mathbb{R}$. Find all real number solutions x_{1}, \ldots, x_{n} to the system of equations

$$
\left\{\begin{array}{c}
x_{1}+\ldots+x_{n}=a \\
x_{1}^{2}+\ldots+x_{n}^{2}=a^{2} \\
\vdots \\
\vdots \\
x_{1}^{n}+\ldots+x_{n}^{n}=a^{n}
\end{array}\right.
$$

(and prove that there are no other soulutions).
2. Let f be a real-valued function on $[0,1]$ such that $f(0)=f(1)=0$ and

$$
f\left(\frac{x+y}{2}\right) \leq f(x)+f(y) \quad \text { for all } x, y \in[0,1] .
$$

Prove that the set of zeroes of f is dense in $[0,1]$ (that is, for any $0 \leq a<b \leq 1$ there exists a point $x \in(a, b)$ such that $f(x)=0)$.
3. Prove that for any $x \in \mathbb{R}, \sin (\cos x)<\cos (\sin x)$.
4. Given a triangle $\triangle A B C$, find the set of points P inside this triangle such that area $(\triangle A P C)=2$ area $(\triangle A P B)$.

5. Suppose that every point of the plane is colored one of three colors, red, blue, or green. Prove that for any $x>0$ there are points P and Q in the plane having the same color and such that $d(P, Q)=x$, where $d(P, Q)$ denotes the distance between P and Q.
6. Find all $n \in \mathbb{N}$ such that $p=\left\lfloor\frac{n^{2}}{3}\right\rfloor$ is prime. (For a real number $x,\lfloor x\rfloor$ denotes the integer part of x, the largest integer $\leq x$.)

